Some innovations for hardy-type inequalities on time scales

  • Lütfi Akın Mardin Artuklu University

Abstract

In this article, we introduce some innovations for the validity of a generalized two weighted and variable exponent Hardy-type inequality on time scales via diamond-\alpha integral. The corresponding continuous case is given when T=R . At the end of our study, some applications are added that prove the validity of our main result for some continuous results that are well known in the literature.

Downloads

Download data is not yet available.

References

Hardy, G.H., Note on a theorem of Hilbert, Math. Z. 6(3–4), 314–317 (1920).

Hardy, G.H., Notes on some points in the integral calculus, LX. An inequality between integrals, Mess. Math. 54,150–156 (1925).

Andersen, K.F., Heinig, H.P., Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14, 834-844 (1983).

Anderson, K., Muckenhoupt, B., Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Stud. Math. 72, 9-26 (1982).

Bennett, G., Some elementary inequalities, Q. J. Math. Oxf. Ser. (2) 38(2), 401–425(1987).

Copson, E.T., Note on series of positive terms, J. Lond. Math. Soc. 3, 49-51 (1928).

Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952).

Heinig, H.P., Weighted norm inequalities for certain integral operators II, Proc. Am. Math. Soc. 95, 387–395 (1985).

Kufner, A., Maligranda, L., Persson, L.E., The Hardy Inequalities: About Its History and Some Related Results, Vydavatelski Servis Publishing House, Pilsen (2007).

Kufner, A., Persson, L.E., Weighted Inequalities of Hardy Type, World Scientific, Singapore (2003).

Opic, B., Kufner, A., Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series,Longman, Harlow (1990).

Muckenhoupt, B., Hardy’s inequality with weights, Stud. Math. 44(1), 31-38 (1972).

Gurka, P., Generalized Hardy’s inequality, Cas. Pest. Mat. 109(2), 194-203 (1984).

Beesack, P.R., Hardy’s inequalities and its extensions, Pac. J. Math. 11(1), 31-61 (1961).

Bradley, J.S., Hardy inequality with mixed norms, Can. Math. Bull. 21(4), 405-408, (1978).

Hinton, D.B., Lewis, R.T., Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Camb. Philos. Soc. 77, 337-347 (1975).

Stepanov, V.D., Two-weighted estimates of Riemann–Liouville integrals, Izv. Akad. Nauk SSSR, Ser. Mat. 54(3), 645-656 (1990).

Kufner, A., Heinig, H.P., Hardy’s inequality for higher order derivatives, Tr. Mat. Inst. Steklova 192, 105-113 (1990).

Kufner, A., Higher order Hardy inequalities, Collect. Math. 44, 147-154 (1993).

Kufner, A., A remark on kth order Hardy inequalities, Tr. Mat. Inst. Steklova 248, 144-152 (2005).

Sinnamon, G., Kufner’s conjecture for higher order Hardy inequalities, Real Anal. Exch. 21(2), 590-603 (1995/96).

Agarwal, R.P., Bohner, M., Saker, S.H.,Dynamic Littlewood-type inequalities, Proc. Am. Math. Soc. 143(2), 667–677 (2015).

Oguntuase, J.A., Persson, L.E., Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal. 5(2), 61-73 (2014).

Rehak, P., Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl. 5, 495-507 (2005).

Saker, S.H., Hardy–Leindler type inequalities on time scales, Appl. Math. Inf. Sci. 8(6), 2975-2981 (2014).

Saker, S.H., O’Regan, D., Extensions of dynamic inequalities of Hardy’s type on time scales,Math. Slovaca 65(5), 993-1012 (2015).

Saker, S.H., O’Regan, D., Hardy and Littlewood inequalities on time scales, Bull. Malays. Math. Sci. Soc. 39(2), 527-543 (2016).

Saker, S.H., O’Regan, D., Agarwal, R.P., Some dynamic inequalities of Hardy’s type on time scales, Math. Inequal. Appl.17, 1183-1199 (2014).

Saker, S.H., O’Regan, D., Agarwal, R.P., Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math. Nachr. 287(5–6), 686-698 (2014).

Saker, S.H., O’Regan, D., Agarwal, R.P., Dynamic inequalities of Hardy and Copson types on time scales, Analysis 34,391-402 (2014).

Saker, S.H., O’Regan, D., Agarwal, R.P., Littlewood and Bennett inequalities on time scales, Mediterr. J. Math. 12, 605-619 (2015).

Saker, S.H., Rezk, H.M., Krnic, M., More accurate dynamic Hardy-type inequalities obtained via superquadraticity, Rev. R. Acad. Cienc. Exactas F´ıs. Nat., Ser. A Mat. 113(3), 2691-2713 (2019).

Saker, S.H., Saied, A.I., Krnic, M., Some new weighted dynamic inequalities for monotone functions involving kernels, Mediterr. J. Math. 17(2), 1-18 (2020).

Saker, S.H., Saied, A.I., Krnic, M., Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Rev. R. Acad. Cienc. Exactas F´ıs. Nat., Ser. A Mat. 114, 1-16 (2020).

Saker, S.H., Mahmoud, R.R., Peterson, A., Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math. 13(2), 585-606 (2014).

Hilger, S., Ein Maßkettenkalkul mit Anwendung auf Zentrmsmannigfaltingkeiten,Ph.D. Thesis, Univarsi. Wurzburg (1988).

Bohner, M., Agarwal, R.P., Basic calculus on time scales and some of its applications, Resultate der Mathematic. 35, 3-22 (1999).

Bohner, M., Peterson, A., Dynamic equations on time scales, An introduction with applications, Birkhauser, Boston (2001).

Agarwal, R.P., O’Regan, D., Saker, S.H., Hardy Type Inequalities on Time Scales, Springer: Cham, Switzerland (2016).

Kac, V., Cheung, P., Quantum Calculus, Universitext Springer, New York (2002).

Akın, L., On the Fractional Maximal Delta Integral Type Inequalities on Time Scales, Fractal Fract. 4(2), 1-10 (2020).

Bibi, R., Bohner, M., Pecaric, J., Varosanec, S., Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal. 7(3), 299-312 (2013).

Saker S.H., Mahmoud R.R., Abdo K.R., Characterizations of weighted dynamic Hardy-type inequalities with higherorder derivatives, Journal of Inequalities and Applications, 2021:99, (2021).

Shi, Z.S.H., Yan, D.Y., Criterion on Lp1 × Lp2 → Lqboundedness for oscillatory bilinear Hilbert transform, Abstr. Appl. Anal. 2014 Article ID:712051 (2014).

Mingquan, W., Xudong, N., Di, W.; Dunyan, Y., A note on Hardy-Littlewood maximal operators, Journal of Inequalities and Applications. 2016(21), 1-13 (2016).

Grafakos, L., Classical and Modern Fourier Analysis, China Machine Pres, China (2005).

Rudin, W., Real and Complex Analysis, 3rd edn. McGraw-Hill, Singapore (1987).

Mamedov, F.I., Zeren, Y., Akın, L., Compactification of weighted Hardy operator in variable exponent Lebesgue spaces, Asian Journal of Mathematics and Computer Science. 17(1), 38-47 (2017).

Akın, L., A Characterization of Approximation of Hardy Operators in VLS, Celal Bayar University Journal of Science. 14(3), 333-336 (2018).

Akın, L., Zeren, Y., Some properties for higher order commutators of Hardy-type integral operator on Herz–Morrey spaces with variable exponent, Sigma J. Eng. & Nat. Sci. 10(2), 157-163 (2019).

Capone, C., Cruz-Uribe, D.; SFO, Fiorenza, A., The fractional maximal operator and fractional integrals on variable Lp spaces, Rev. Mat. Iberoamericana, 23(3), 743-770 (2007).

Zhang, P., Wu, J., Commutators of the fractional maximal function on variable exponent Lebesgue spaces, Czechoslovak Mathematical Journal, 64(1), 183-197 (2014).

Beltran, D., Madrid, J., Regularity of the centered fractional maximal Function on radial functions, Journal of Functional Analysis. 108686 (2020).

Akın, L., On some results of weighted Holder type inequality on time scales, Middle East Journal of Science. 6(1), 15-22 (2020).

Orlicz, W., Uber konjugierte Exponentenfolgen, Studia Mathematica, (3), 200-211 (1931).

Acerbi, E., Mingione, G., Regularity results for a class of functionals with nonstandard growth, Archive for Rational Mechanics and Analysis, (156), 121-140 (2001).

Blomgren, P., Chan, T., Mulet, P., Wong, C. K., Total variation image restoration: numerical methods and extensions, Proceedings of the 1997 IEEE International Conference on Image Processing, (3), 384-387 (1997).

Bollt, E. M., Chartrand, R., Esedoglu, S., Schultz, P., Vixie, K. R., Graduated adaptive image denoising: local compromise between total variation and isotropic difusion, Advance Computational Mathematics, (31), 61-85 (2009).

Chen,Y., Levine, S., Rao, M., Variable exponent linear growth functionals in image restoration,, SIAM Journal of Applied Mathematics, (66), 1383-1406 (2006).

Akın, L., On innovations of n-dimensional integral-type inequality on time scales, Adv. Differ. Equ. 148 (2021) (2021).

Akın, L., , A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces, Fractal fractional 5(1), 1-13 (2021).

Akın, L., On generalized weighted dynamic inequalities for diamond−α integral on time scales calculus,Indian Journal of Pure & Applied Mathematics,Article, Early Access (2023).

Published
2025-07-13
Section
Research Articles