THe Existence of two solutions for $(p(x),q(x))$-Laplacian problems with Steklov boundary conditions
Abstract
The present paper discusses an elliptic equation with Steklov boundary conditions and $(p(x),q(x))$-Laplacian. Using mountain pass theorem together with Ekeland's variational principle, we prove, under appropriate conditions on the functions involved, that the problem admits at least two solutions.Downloads
References
M. Allaoui, A.R Elamrouss; Solutions for Steklov boundary value problems involving p(x)-Laplace operators, Bol. Soc. Paran. Mat., 32 1(2014), 163–173.
C. O. Alves, J.L.P Barreiro; Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth, J. Math. Anal. Appl., 403 (2013), 143–154.
S. N. Antontsev, J. F. Rodrigues; On stationary thermorheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19–36.
M. M. Boureanu, D. N. Udrea; Existence and multiplicity results for elliptic problems with p(.)-Growth conditions. Nonlinear Anal. Real World Appl., 14 (2013), 1829–1844.
Y. Chen, S. Levine, R. Ran; Variable exponent, linear growth functionals in image restoration. Ann. Math. Sinica., 17A(5)(1996), 557–564.
S. G. Deng; Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925–937.
S. G. Deng; Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360 (2009), 548–560.
D. Edmunds, J. R˘akosnic; Sobolev embeddings with variable exponent. Studia Math., 143 (2000), 267–293.
I. Ekeland; On the variational principle, J. Math. Appl., 47 (1974), 324–353.
X. L. Fan, X. Y. Han; Existence and multiplicity of solutions for p(x)-Laplacian equations in RN, Nonlinear Anal., 59 (2004), 173–188.
X. L. Fan, Q. H. Zhang; Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843–1852.
X. L. Fan, J. S. Shen, D. Zhao; Sobolev embedding theorems for spaces Wk,p(x), J. Math. Anal. Appl., 262 (2001), 749–760.
X. L. Fan, D. Zhao; On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. App. 263 (2001), 424–446.
G. Fragnelli; Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl., 73 (2010). 110-121.
Y. Jabri; The mountain Pass Theorem. Variants, Generalizations and Some Application. Cambridge University Press, 2003.
B. Karim, A. Zerouali, O. Chakrone; Existence and multiplicity results for Steklov problem with p(.)-growth conditions, Bulletin of the Iranian Mathematical Society., 44 (2018), 819–836.
O. Kov´acik, J. R´akosnik; On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592–618.
M. Mihailescu; Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419–1425.
M. Mihailescu, V. Radulescu; On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer Math. Soc., 135 (2007), 2929–2937.
B. Ricceri; Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling, 32 (2000), 1485–1494.
B. Ricceri; A three critical points theorem revisited, Nonlinear Anal., 70 (2009), 3084–3089.
M. Ruzicka; Electrorheological Fluids: Modeling and Mathematical Theory. Springer-verlag, Berlin, 2002.
A. Zerouali, B. Karim, O. Chakrone, A. Anane; Existence and Multiplicity results for elliptic problems with Nonlinear Boundary conditions and variable exponents, Bol. Soc Paran. Mat., (3s)v. 33 2 (2015), 123–133.
V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat., 50 (0986), 675–710.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).