Existence and stability results for fractional integro-differential equation with Hilfer fractional derivative
Abstract
In this paper, we discuss the existence, uniqueness of solutions and Ulam-Hyers stability for the Hilfer fractional integro-differential equation with nonlocal Erdélyi-Kober fractional condition. First, the equivalence of this class of problem and a nonlinear Volterra integral equation is established. Next, the existence and uniqueness results are obtained by using a variety of fixed point theorems, such as Banach's and Krasnoselskii's fixed point theorems. Further, due to the Gronwall inequality, we obtain Ulam-Hyers stability of the considered problem. Finally, two examples are given to illustrate our theory results.Downloads
References
M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving Hilfer fractional derivative, Adv. Appl. Math Mech., 11, 1-22, (2019).
M. S. Abdo, S. K. Panchal, H. S. Hussien, Fractional integro-differential equations with nonlocal conditions and ψ-Hilfer fractional derivative, Mathematical Modelling and Analysis, 24:4, 564-584, (2019).
M. S. Abdo, S. T. M. Thabet, B. Ahmad, The existence and Ulam–Hyers stability results for ψ-Hilfer fractional integro-differential equations, J. Pseudo-Differ. Oper. Appl, 11, 1757-1780, (2020).
A. Aghajani, Y. Jalilian, J. J. Trujillo, On the existence of solutions of fractional integro-differential equations, Fractional Calculus and Applied Analysis, 15:1, 44-69, (2012).
M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstratio Mathematica, 52, 437-450, (2019).
L. Byszewski, Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162, 494-505, (1991).
L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, 1995.
L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing, 5, 81-88, (1991).
W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68, 46-53 (1995).
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific: Singapore, 2000.
R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouvill fractional derivatives, Frac. Calc. Appl. Anal., 12, 299-318, (2009).
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory And Applications of Fractional Differential Equations, Vol. 204, Elsevier Science Limited, 2006.
V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Math. 301, Longman, Harlow-J. Wiley, N. York, 1994.
A. Lachouri, M.S. Abdo, A. Ardjouni, et al., Hilfer fractional differential inclusions with Erd´elyi–Kober fractional integral boundary condition, Adv. Differ. Equ., 244, (2021).
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models. Imperial College Press, London, 2010.
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
I. A. Rus, Ulam stabilities of ordinary diffrential equations in a Banach space, Carpathian. J. Math., 26, 103-107, (2010).
S. G. Samko, A. A. Kilbas, D. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
V. M. Sehgal, S. P. Singh, On a fixed point theorem of Krasnoselskii for locally convex spaces, Pacifc J. Math., 62, 561-567, (1976).
D. R. Smart, Fixed point theory, Combridge Uni. Press, Combridge, 1974.
D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15:1, 1-21, (2018).
H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional diffrential equation, J. Math. Anal. Appl., 328, 1075-1081, (2007).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).