Appell-Type Extension of The $_pR_q(\nu,\tau;z)$ Function
ATE pRq F
Abstract
In this paper, we define two variables Appell-type extension of the $_pR_q(\nu,\tau;z)$ function. Also, we obtain confluence formulas, double integral representations and differentiation formulas for the Appell-type extension of the $_pR_q(\nu,\tau;z)$ function.Downloads
Download data is not yet available.
References
\bibitem{b1} W. N. Bailey, Generalized hypergeometric series, second edition, Cambridge Mathematical Tract, No. 32, Cambridge University Press, Cambridge, (1964).
\bibitem{d1} R. Desai, A. K. Shukla, Some results on function ${}_p{R_q}(\alpha ,\beta ;z)$, J. Math. Anal. Appl., 448(1)(2017), 187-197.
\bibitem{d2} R. Desai, A. K. Shukla, Note on the ${}_pR_q(\alpha,\beta; z)$ function, J. Indian Math. Soc., 88(3-4) (2021), 288-297.
\bibitem{e2} A. Erd\'{e}lyi, H. Bateman, Higher transcendental functions. Vol. I, McGraw-Hill, New York, (1953).
\bibitem{m1} G. M. Mittag-Leffler, Sur la nouvelle fonction $ E_{\alpha } \left( x \right) $, C. R. Acad. Sci. Paris, 137 (1903), 554-558.
\bibitem{p2} T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the Kernel, Yokohama Math. J., 19(1971), 7-15.
\bibitem{r1} E. D. Rainville, Special Functions, Mcmillan, New York, (1960).
\bibitem{s1} R. K. Saxena, S. L. Kalla, R. Saxena, On a multivariate analogue of generalized Mittag-Leffler function, Integral Transforms Spec Funct., 22(7) (2011), 533-548.
\bibitem{s2} K. Sharma, Application of fractional calculus operators to related areas, Gen 7(1) (2011), 33–40.
\bibitem{s3} M. Sharma, R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449–452.
\bibitem{w1} A. Wiman, Über den fundamental Satz in der Theorie der Funktionen $ E_{\alpha } \left( x \right) $, Acta Math., 29 (1905), 191-201.
\bibitem{w2} E. M. Wright, The generalized bessel function of order greater than one, Quarterly Journal of Mathematics, 11(1) (1940), 36-48.
\bibitem{d1} R. Desai, A. K. Shukla, Some results on function ${}_p{R_q}(\alpha ,\beta ;z)$, J. Math. Anal. Appl., 448(1)(2017), 187-197.
\bibitem{d2} R. Desai, A. K. Shukla, Note on the ${}_pR_q(\alpha,\beta; z)$ function, J. Indian Math. Soc., 88(3-4) (2021), 288-297.
\bibitem{e2} A. Erd\'{e}lyi, H. Bateman, Higher transcendental functions. Vol. I, McGraw-Hill, New York, (1953).
\bibitem{m1} G. M. Mittag-Leffler, Sur la nouvelle fonction $ E_{\alpha } \left( x \right) $, C. R. Acad. Sci. Paris, 137 (1903), 554-558.
\bibitem{p2} T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the Kernel, Yokohama Math. J., 19(1971), 7-15.
\bibitem{r1} E. D. Rainville, Special Functions, Mcmillan, New York, (1960).
\bibitem{s1} R. K. Saxena, S. L. Kalla, R. Saxena, On a multivariate analogue of generalized Mittag-Leffler function, Integral Transforms Spec Funct., 22(7) (2011), 533-548.
\bibitem{s2} K. Sharma, Application of fractional calculus operators to related areas, Gen 7(1) (2011), 33–40.
\bibitem{s3} M. Sharma, R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449–452.
\bibitem{w1} A. Wiman, Über den fundamental Satz in der Theorie der Funktionen $ E_{\alpha } \left( x \right) $, Acta Math., 29 (1905), 191-201.
\bibitem{w2} E. M. Wright, The generalized bessel function of order greater than one, Quarterly Journal of Mathematics, 11(1) (1940), 36-48.
Published
2025-09-17
Issue
Section
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



