Regularity results for a singular elliptic equations involving variable exponents
Abstract
This paper is devoted to studying the existence, uniqueness and regularity of nonnegative weak solutions for a class of nonlinear singular elliptic equations with variable exponents. Our results can be seen as a generalization of some results given in the constant exponents case.
Downloads
References
H. Abdelaziz; Singular Elliptic Equations with Variable Exponents. Int. J. Math. And Appl., 11(4): (2023) 141-168.
H. Abdelaziz, F. Mokhtari; Nonlinear anisotropic degenerate parabolic equations with variable exponents and irregular data, J. Ellip. Para. Equa. 8 (2022) 513-532.
S.N. Antontsev, J.I. Diaz, S. Shmarev; Energy Methods for Free Boundary Problems, Progress in Nonlinear Differential Equations and their Applications, vol. 48, Birkhauser Boston, Boston, MA (2002).
R. Arora, S. Shmarev ; Existence and global second-order regularity for anisotropic parabolic equations with variable growth, Journal of Differential Equations, 349 (2023) 83-124.
H. Ayadi, F. Mokhtari; Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity. Electronic Journal of Differential Equations, 2018 (2018) 1-23.
L. Boccardo, G. Croce; The impact of a lower order term in a dirichlet problem with a singular nonlinearity. Portugaliae Mathematica, European Mathematical Society Publishing House, Vol.76, Fasc. 3-4 (2019) 407-415.
A. Canino, B. Sciunzi, A. Trombetta; Existence and uniqueness for p-laplace equations involving singular nonlinearities. Nonlinear Differ. Equ. Appl. (2016) 23:8.
J. Carmona, A. J. Martınez-Aparicio, P. J. Martınez-Aparicio, M. Martınez-Teruel; Regularizing Effect in Singular Semilinear Problems. Mathematical Modelling and Analysis. 28(4): (2023), 561-580.
J. Carmona, P. J. Martınez-Aparicio; A Singular Semilinear Elliptic Equation with a Variable Exponent. Adv. Nonlinear Stud. (2016).
N. Chems Eddine, M. A. Ragusa, and D. D. Repovs; On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications. Fractional Calculus and Applied Analysis. (2024).
Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006) 1383-1406.
Y. Chu, R. Gao, Y. Sun; Existence and regularity of solutions to a quasilinear elliptic problem involving variable sources, J.Springer. Boundary. Val. Pro., 2017 (2017), 1-15.
L. Diening, P. H¨ast¨o, T. Harjulehto, M. Ruzicka; Lebesque and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Berlin, (2011).
R. Durastanti, F. Oliva; The Dirichlet problem for possibly singular elliptic equations with degenerate coercivity. Advances in Differential Equations, 29: (5.6), (2024) 339-388.
I. de Bonis, M. M. Porzio; Regularizing Effects for a Singular Elliptic Problem. Axioms (2025), 14, 47.
Elharrar, N., Igbida, J., Bouhlal, A. On p()-Laplacian problem with singular nonlinearity having variable exponent. J. Ellip. Para. Equa. (2021).
F. Esposito, B. Sciunzi, A. Trombetta; Existence and uniqueness for anisotropic quasilinear elliptic equations involving singular nonlinearities. Discrete and Continuous Dynamical Systems, (2024).
X. Fan; Anisotropic variable exponent Sobolev spaces and ⃗p(·)-Laplacian equations, Complex Variables and Elliptic Equations, 55 (2010) 1-20.
X. L. Fan, D. Zhao; On the spaces Lp(x)(U), and Wm;p(x)(U), J. Math. Anal. Appl., 263 (2001) 424-446.
F. Faraci; On a singular elliptic problem with variable exponent, Stud. Univ. Babe¸s-Bolyai Math. 68:(1), (2023) 43-50.
P. Garain; On the regularity and existence of weak solutions for a class of degenerate singular elliptic problem, manuscripta math, (2023).
P. Garain, W. Kim, J. Kinnunen; On the regularity theory for mixed anisotropic and nonlocal p-Laplace equations and its applications to singular problems, Forum Mathematicum, (2023).
A. Ghanmi, L. Mbarki, D. Choudhuri; Existence of Multiple Solution for a Singular p(x)-Laplacian Problem. Complex Anal. Oper. Theory 18, 26 (2024).
H. Khelifi, Y. El hadfi; Nonlinear elliptic equations with variable exponents involving singular nonlinearity. Mathematical Modeling and Computing, 8:(4) (2021) 705-715.
H. Khelifi, F. Mokhtari; Nonlinear Degenerate Parabolic Equations with a Singular Nonlinearity, Acta Applicandae Mathematicae, (2024) 189:6.
A. Kufner, J. Oldrich and S. Fucik; Function spaces , Noordhoff International Publishing, Leyden, Series V. 3 (1977).
Z. Liu, N. S. Papageorgiou; Singular anisotropic equations with a sign-changing perturbation. Nonlinear Analysis: Modelling and Control, 1–18 (2023).
R. Mecheter; Nonlinear weighted elliptic problem with variable exponents and L1 data. Indian J Pure Appl Math (2024).
F. Mokhtari; Regularity of the solution to nonlinear anisotropic elliptic equations with variable exponents and irregular data, Mediterr. J. Math. 14, 141 (2017).
F. Mokhtari, K. Bachouche, H. Abdelaziz; Nonlinear elliptic equations with variable exponents and measure or Lm data, J. Math. Sci. 35 (2015) 73-101.
F. Mokhtari, R. Mecheter; Anisotropic degenerate parabolic problems in RN with variable exponent and locally integrable data. Mediterr. J. Math., 16(3): (2019) 1-21.
M. Naceri; Singular Anisotropic Elliptic Problems with Variable Exponents, Memoirs on Differential Equations and Mathematical Physics. 85 (2022) 119-132.
F. Oliva, F. Petitta; On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var. 22:1 (2016) 289-308.
K. Rajagopal, M. Ruzicka; Mathematical modelling of electro-rheological fluids. Contin. Mech. Thermodyn. 13 (2001) 59-78.
J. Rakosnık; Some remarks to anisotropic Sobolev spaces II, Beitr. Anal. 15(1981) 127-140.
K. Saoudi, A. Ghanmi; A multiplicity result for a singular equation involving the p(x)-Laplace operator, Complex Var. Elliptic Equ. 62 (2017) 695-725.
A. Sbai, Y. El hadfi; Degenerate elliptic problem with a singular nonlinearity. Complex Var. Elliptic Equ. 68:5 (2023) 701-718.
G. Stampacchia, Le probl`eme de Dirichlet pour les equations elliptiques du second ordre `a coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15 (1965) 189-258.
M. Troisi; Teorimi di inclusione per spazi di Sobolev non isotropi. Ricerche Math. 18 (1969) 3-24.
J. L. Vazquez; A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984) 191-202.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



