Some new bounds on the spectral radius and the energy of graphs
Resumo
Let $G=(V,E)$ be a simple connected graph. For any $v\in V$, the maximum neighbourhood degree $m(v)$ is the maximum vertex degree in the neighbourhood $N(v)$. In this paper, we present some new bounds on the spectral radius $\lambda_{1}(G)$ of $G$ in terms of degrees and maximum neighbourhood degrees of graph $G$. Also, we present some new bounds on the energy $E(G)$ of $G$.
Downloads
Não há dados estatísticos.
Referências
References
[1] Bar-Noy, A., Choudhary, K., Peleg, D. and Rawitz, D., Graph Realizations: Maximum and Minimum Degree in Vertex Neighborhoods, arXiv:
1912.13286v1(2019)
[2] Barrus, M., Donovan, E., Neighbourhood degree lists of graphs, Discret.Math. 341, 175-183(2018).
[3] Collatz, L. and Sinogowitz, U., Spektren Endlicher Grafen, Abh. Math.Sem. Univ. Hamburg 21, 63-77(1957).
[4] Cvetkovic, D., Doob, M. and Sachs, H., Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980.
[5] Cvetkovic, D. and Rowlinson, P., The largest eigenvalue of a graph: A survey, Linear Multilinear Algebra 28, 3-33(1990).
[6] Das, K. Ch., Kumar, P., Some new bounds on the spectral radius of graphs, Discrete Mathematics 281, 149-161(2004).
[7] Edwards, C. and Elphick, C., Lower bounds for the clique and the chromatic number of a graph, Discr. Appl. Math. 5, 51-64(1983).
[8] Favaron, O., Maheo, M., J-FSacle, Some eigenvalue properties in graphs, Discrete. Math. 111, 179-220(1993).
[9] Randic, O. M., On Characterization of molecular branching, J. Amer. Chem. Soc. 97, 6609-6615(1975).
[10] Gutman, I., The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz. 103, 1-22(1978).
[11] Gutman, I., Polansky, O. E., Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
13
[12] Gutman, I., Total electron energy of benzenoid hydrocarbons, Topics Curr. Chem 162, 29-63(1992).
[13] Gutman, I., The energy of a graph: Old and new results: A. Betten, A. Kohnert, R. Laue, A. Wassermann(Eds.), Springer Verlag,, 196-211(2001).
[14] Hefmeister, M., Spectral radius and degree sequence, Math. Nachr 139, 37-44(1988).
[15] Hou, Y., Tang, Z. andWoo, C., On the Spectral radius, k-degree and the upper bound of Energy in a Graph, MATCH Communn. Math. Comput.
Chem. 57, 341-350(2007).
[16] Li, X., Shi, Y., Gutman, I., Graph Energy, New York: Spinger (2012)
[17] MeClelland, B. J., Properties of the latent roots of a matrix: The estimation of -electron energies, J. Chem. Phys. 54, 640-643(1971).
[18] Nikiforov, V., Some inequalities for the largest eigenvalues of a graph, Combin. Probab. Comput. 11, 179-189(2003).
[19] Nikiforov, V., Walks and the spectral radius of graphs, Linear Algebra. Appl. 418, 257-268(2006).
[20] Nishimura, N. and Subramanya, V., Graph editing to given neighbourhood degree list is xed-parameter tractable, In X.Gao, H.Du
and M.Han(eds)COCOA 2017: Combinatorial Optimizations and applications, Vol.10628 of lecture Notes in Computer Science, 138-
153(2017)(Springer, Cham,).
[21] Stanley, R. P., A bound on the spectral radius with e edges, Linear Algebra. Appl. 87, 267-269(1987).
[22] Yu, A., Lu, M., Tian, F., On the spectral radius of graphs, Linear Algebra. Appl. 387, 41-49(2004).
[1] Bar-Noy, A., Choudhary, K., Peleg, D. and Rawitz, D., Graph Realizations: Maximum and Minimum Degree in Vertex Neighborhoods, arXiv:
1912.13286v1(2019)
[2] Barrus, M., Donovan, E., Neighbourhood degree lists of graphs, Discret.Math. 341, 175-183(2018).
[3] Collatz, L. and Sinogowitz, U., Spektren Endlicher Grafen, Abh. Math.Sem. Univ. Hamburg 21, 63-77(1957).
[4] Cvetkovic, D., Doob, M. and Sachs, H., Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980.
[5] Cvetkovic, D. and Rowlinson, P., The largest eigenvalue of a graph: A survey, Linear Multilinear Algebra 28, 3-33(1990).
[6] Das, K. Ch., Kumar, P., Some new bounds on the spectral radius of graphs, Discrete Mathematics 281, 149-161(2004).
[7] Edwards, C. and Elphick, C., Lower bounds for the clique and the chromatic number of a graph, Discr. Appl. Math. 5, 51-64(1983).
[8] Favaron, O., Maheo, M., J-FSacle, Some eigenvalue properties in graphs, Discrete. Math. 111, 179-220(1993).
[9] Randic, O. M., On Characterization of molecular branching, J. Amer. Chem. Soc. 97, 6609-6615(1975).
[10] Gutman, I., The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz. 103, 1-22(1978).
[11] Gutman, I., Polansky, O. E., Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
13
[12] Gutman, I., Total electron energy of benzenoid hydrocarbons, Topics Curr. Chem 162, 29-63(1992).
[13] Gutman, I., The energy of a graph: Old and new results: A. Betten, A. Kohnert, R. Laue, A. Wassermann(Eds.), Springer Verlag,, 196-211(2001).
[14] Hefmeister, M., Spectral radius and degree sequence, Math. Nachr 139, 37-44(1988).
[15] Hou, Y., Tang, Z. andWoo, C., On the Spectral radius, k-degree and the upper bound of Energy in a Graph, MATCH Communn. Math. Comput.
Chem. 57, 341-350(2007).
[16] Li, X., Shi, Y., Gutman, I., Graph Energy, New York: Spinger (2012)
[17] MeClelland, B. J., Properties of the latent roots of a matrix: The estimation of -electron energies, J. Chem. Phys. 54, 640-643(1971).
[18] Nikiforov, V., Some inequalities for the largest eigenvalues of a graph, Combin. Probab. Comput. 11, 179-189(2003).
[19] Nikiforov, V., Walks and the spectral radius of graphs, Linear Algebra. Appl. 418, 257-268(2006).
[20] Nishimura, N. and Subramanya, V., Graph editing to given neighbourhood degree list is xed-parameter tractable, In X.Gao, H.Du
and M.Han(eds)COCOA 2017: Combinatorial Optimizations and applications, Vol.10628 of lecture Notes in Computer Science, 138-
153(2017)(Springer, Cham,).
[21] Stanley, R. P., A bound on the spectral radius with e edges, Linear Algebra. Appl. 87, 267-269(1987).
[22] Yu, A., Lu, M., Tian, F., On the spectral radius of graphs, Linear Algebra. Appl. 387, 41-49(2004).
Publicado
2025-01-24
Edição
Seção
Artigos
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).