On characterization of inclusion properties for grand Lorentz spaces on a finite measure
Abstract
In this paper, we give some well-known results and investigate some inclusion theorems of the spaces $L^{p,q)}$ and $\Lambda _{p),\omega }.$ Also, we consider equivalence assertions for these spaces. Finally, we present the approximation identities in $\Lambda _{p),\omega }$ by the boundedness of maximal operator.
Downloads
References
R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
I. Aydin and A.T. Gurkanli, The inclusion Lp(x)(μ) ⊆ Lq(x)(ν), International Journal of Applied Mathematics 22(7), 1031–1040 (2009).
I. Aydin and C. Unal, The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces, Collect. Math. 71(3), 349–367 (2020).
I. Aydin and C. Unal, The inclusion theorems for generalized variable exponent grand Lebesgue spaces, Korean J. Math. 29(3), 581-591 (2021).
A. P. Blozinski, Convolution of L(p, q) functions, Proc. Amer. Math. Soc. 32(1), 237–240 (1972).
M. Carro, L. Pick, J. Soria and V.D. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4(3), 397–428 (2001).
H. Cartan, Differential Calculus, Hermann, Paris-France 1971.
D. V. Cruz-Uribe and A. Fiorenza, Approximate identities in variable Lp spaces, Math. Nach. 280, 256–270 (2007).
J. Duoandikoetxea, Fourier Analysis vol. 29 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA 2000.
A. Fiorenza and G.E. Karadzhov, Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwen. 23(4), 657–681 (2004).
A. Fiorenza, M.R. Formica and A. Gogatishvili, On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s, Differ. Equ. Appl. 10(1), 21–46 (2018).
A. Fiorenza, M.R. Formica, A. Gogatishvili, T. Kopaliani and J.M. Rakotoson, Characterization of interpolation between grand, small or classical Lebesgue spaces, Nonlinear Anal. 177(B), 422–453 (2018).
L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92, 249–258 (1997).
A. T. Gurkanli, On the inclusion of some Lorentz spaces, J. Math. Kyoto Univ. 44-2, 441–450 (2004).
A. T. Gurkanli, Inclusions and the approximate identities of the generalized grand Lebesgue spaces, Turkish J. Math. 42, 3195–3203 (2018).
T. Iwaniec and C. Sbordone, On integrability of the Jacobien under minimal hypotheses, Arch. Rational Mechanics Anal. 119, 129–143 (1992).
P. Jain and S. Kumari, On grand Lorentz spaces and maximal operator, Georgian Math. J. 19, 235–246 (2012).
O. Kov´aˇcik and J. R´akosn´ık, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116)(4), 592–618 (1991).
O. Kulak, The inclusion theorems for variable exponent Lorentz spaces, Turkish J. Math. 40, 605–619 (2016).
G. G. Lorentz, Some new functional spaces, Ann. of Math. 51(2), 37-55 (1950).
G. G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1, 411–429 (1951).
A. G. Miamee, The inclusion Lp(μ) ⊆ Lq(ν), Amer. Math. Monthly 98, 342–345 (1991).
J. L. Romero, When Lp(μ) contained in Lq(μ), Amer. Math. Monthly 90, 203–206 (1983).
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J. 1970.
B. Subramanian, On the inclusion Lp(μ) ⊂ Lq(μ), Amer. Math. Monthly 85, 479–481 (1978).
L. Y. H. Yap, Some remarks on convolution operators and L(p, q) spaces, Duke Math. J. 36(4), 647–658 (1969).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).