Existence and stability for a boundary value problem of Ambartsumian equation with -Hilfer generalized proportional fractional derivative
Abstract
In this paper, we prove the existence and uniqueness of solution for the mixed boundary value problem of Ambartsumian equation using -Hilfer generalized proportional fractional derivative(PFD). The main principles applied to investigate our results are based on the standard fixed point theorems. We dewell in detail on some results concerning the Hyers-Ulam type stability. We verify our result with an illustrative example.
Downloads
References
S. Abbas, M. Benchohra, G.M. N’Guerekata, Topics in fractional differential equations, Springer, New York, (2012).
B. Ahmad, S. K. Ntouyas, Hilfer Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5, 195, (2021).
I. Ahmed, P. Kumam, F. Jarad, P.Borisut, W.Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 1, 1-18, (2020).
S. Ahmad, A. Ullah, A. Akgul, Manuel De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernal, AIMS Math., 6(9), 9981-9997, (2021).
V. A. Ambartsumian, On the fluctuation of the brightness of the milky way, Dokl. Akad. Nauk, USSR., 44, 223-226, (1994).
H. O. Bakodah, A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jaffari approximate method, Math., 6, 331, (2018).
K. M. Furati, M. D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. with Appl., 64, 1616-1626, (2012).
A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag., New York, (2003).
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27, 222–224, (1941).
F. Jarad, M. A. Alquadah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math, 18, 167-176, (2020).
F. Jarad, T. Abedljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl, 10, 2607-2619, (2017).
F. Jarad, T. Abedljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv.Differ.Equ., 2020, 1-16, (2020).
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865, (2011).
U. N. Katugampola, A new approach to generalized fractional derivatives, Appl. Math. Comput., 6, 1-15, (2014).
R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70, (2014).
D. Kumar, J. Singh, D. Baleanu, S.Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus., 133, 259, (2018).
I. Mallah, S. Alha, I. Ahmed, A. Akgul, F. Jarad, On -Hilfer generalized proportional fractional operators, AIMS. Math., 7, 82-103, (2021).
S. Manikandan, K. Kanagarajan, E. M. Elsayed, D. Vivek, Nonlocal Initial Value Problems for Ambartsumian Equation with Hilfer Generalized Proportional Fractional Derivative, Appl.Sci.Uni.J., 7, 47-61, (2023).
S. Manikandan, Seenith Sivasundaram, D. Vivek, K. Kanagarajan, Controllability and qualitative property results for Ambartsumian equation via Ξ- Hilfer generalized proportional fractional derivative on time scales, Nonlinear Stud., 29, 1-23, (2022).
J. Patade, S.Bhalekar, On analytical solution of Ambartsumian equation, Natl. Acad. Sci. Lett., 40, 291-293, (2017).
S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Math.,7, 1-16, (2019).
J. V. C. Sousa, E. C. Oliveira, On the -Hilfer fractional derivative, Commun. Nonlinear Sci., 60, 72-91, (2018).
W. Sudsutad, C. Thaiprayoon, S. K. Ntouyas, Existence and stability results for -Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Mathematics., 6(4), 4119-4141, (2021).
S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, (1960).
D. Vivek, K. Kanagarajan, E. Elasyed, Some existence and stability results for Hilfer fractional implicit differential equations with nonlocal conditions, Mediterr.J.Math., 15, 15, (2018).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).