On the ideal discriminant of some relative pure extensions

Resumen

Let L = K(α) be an extension of a number field K where α satisfies the monic irreducible polynomial P(X) = Xp −a ∈ R[X] of prime degree p and such that a is pth power free in R := OK (the ring of integers of K). The purpose of this paper is to give an explicit formula for the ideal discriminant DL/K of L over K involving only the prime ideals dividing the principal ideals aR and pR. As an illustration, we compute the discriminant DL/K of a family of septic and quintic pure fields over quadratic fields. Hence a slightly simpler computation of discriminant DL/K is obtained.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mohammed E. Charkani, Sidi Mohamed Ben Abdellah University

Department of Mathematics

Omar Boughaleb, Sidi Mohamed Ben Abdellah University

Department of Mathematics

Citas

Atiyah. M. F, Macdonald. I. G., Introduction to Commutative Algebra. Addison-Wesley, Massachusetts, (1969).

Cassels. J. W. S, Fröhlich. A., Algebraic Number Theory, Academic Press, London and New york, 1967.

M. E. Charkani, O. Lahlou, On Dedekind’s criterion and monogenicity over Dedekind rings. Int. J. of Math. and Math. Sci. (2003) (7) (2003) 4455–4464. Zbl 1066.11046, https://doi.org/10.1155/S0161171203211534.

M. E. Charkani, A. Deajim, Generating a power basis over a Dedekind Ring. J. Number Theory 132, No. 10, 2267-2276, (2012).Zbl 1293.11101, https://doi.org/10.1016/j.jnt.2012.04.006.

M. E. Charkani, A. Deajim, Relative index extensions of Dedekind rings. JP J. Algebra, Number Theory and Appl 27, 73–84 (2012). Zbl 1368.11111.

M. Sahmoudi, M. E. Charkani, Relative monogenity of pure cyclic fields of degree an odd prime number. Mathematica Bohemica, pp. 1-12, (2022).

Cohen. H., A Course in Computational Algebraic Number Theory, GTM Vol. 138, Springer Verlag, Berlin, 1996.

I. Corso, L. Rossi, Normal integral bases for cyclic Kummer extensions. Journal of Pure and Applied Algebra, 214(2010) 385391. Zbl 1203.11074, https://doi.org/10.1016/j.jpaa.2009.06.019.

Fröhlich. A, Taylor. M. J., Algebraic Number Theory, Combridge Studies in Advenced Mathematics, 27, Cambridge University Press, (1993).

I.Gaál, Diphantine equations and power integral bases, Theory and algorithms. 2nd edition, Birkhäuser,2019.

A. Hameed, T. Nakahara, Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roumanie Tome, 58(106) No. 4, 2015, 419-433. Zbl 1363.11094.

A. Jakhar, S. K. Khanduja, N.Sanagwan, On integral basis of pure number fields. Mathematika 67 (2021) 187–195.

A. Jakhar, N. Sangwan, Integral basis of pure prime degree number fields. Indian Journal of Pure andd Applied Mathematics, volume 50, pages 309-314 (2019). Zbl 1455.11141.

A. Jakhar, S. K. Khanduja, N. Sangwan, Discriminant of pure square free degree number fields. Acta Arith., 181, 2017, 287-296, DOI: 10.4064/aa170508-4-11.

Janusz.G.J., Algebric Number Fields, Academic Press, New York, Second Edition (1995).

M. Kumar, S. K. Khanduja, A Generalization of Dedekind criterion. Communication in Algebra, 35, 1479-1486 (2007). Zbl 1145.11078, https://doi.org/10.1080/00927870601168897.

Lang. S., Algebra, Second Edition, Addison-Wesley, (1984).

J. Montes, E. Nart, On a theorem of Ore. Journal of Algebra. Vol. 146, (1992) 318-334. Zbl 0762.11045

Neukirch.J., Algebraic Number theory. Springer Publication, (1999).

P. Schmid, On criteria by Dedekind and Ore for integral ring extensions. Arch. Math. 84 (2005) 304–310. Zbl 1072.13004.

H. Smith, The monogeneity of radical extensions. Acta Arithmetica, 198 (2021), 313-327.

B. K. Spearman, K. S. Williams, Relative integral bases for quartic fields over quadratic subfields. Acta Math. Hungar., 70 ,185-192, (1996). Zbl 0864.11051.

A. Soullami, M. Sahmoudi, O. Boughaleb, On relative power integral basis of a family of numbers fields. Rocky Mountain J. Math. 51(4): 1443-1452 (2021). Zbl 1469.11414, https://doi.org/10.1216/rmj.2021.51.1443.

S. L. Tan, D.-Q. Zhang, The determination of integral closures and geometric applications, Adv. in Math. 185 (2004) 215–245, https://doi.org10.1016/S0001-8708(03)00210-X.

K. Uchida, When is Z[] the ring of the integers?, Osaka J. Math. 14 (1977), 155–157.

Publicado
2024-05-22
Sección
Research Articles