Existence results for some nonlinear and noncoercive anisotropic elliptic equations with Neumann boundary conditions
Abstract
The aim of this work is to prove the existence of renormalized solutions for the following anisotropic elliptic problem with degenerate coercivity and Fourier boundary conditions
- \sum_{i=1}^{N}D^i a_i(x,u,\nabla u) + g(x,u,\nabla u) + \alpha(x)|u|^{r-1}u = f in \Omega,
\sum_{i=1}^{N}a_i(x,u,\nabla u).n_i+\lambda u = 0 on \partial\Omega,
where \Omega is an open bounded subset of IR^N (N\geq 2), and the data f belong to L^{1}(\Omega) and the Carathéodory functions a_{i}(x,s,\xi) and g(x,s,\xi) verify some nonstandard conditions.
Downloads
References
A. Aberqi, J. Bennouna and M. Elmassoudi, Existence and Uniqueness of Renormalized Solution for Nonlinear Parabolic Equations in Musielak Orlicz Spaces, Bol. Soc. Parana. Mat. (3) 40 (2022), Paper No. 56, 1-22.
Y. Akdim and A. Salmani, Solvability of nonlinear anisotropic elliptic unilateral problems with variable exponent, Gulf J. Math. 6 (2018), No. 4, 133-150.
F. Andereu, J. M. Maz´on, S. Segura De le´on and J. Teledo, Quasi-linear elliptic and parabolic equations in L1 with non-linear boundary conditions; Adv. Math. Sci. Appl. 7 (1997), pp. 183-213.
S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results; J. Differential and Integral Equations Volume 21, Numbers 5-6 (2008), 401-419.
S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows; Univ. Ferrara Sez. VII Sci. Mat. 52(2007), 19-36.
E. Azroul, M. Bouziani and A. Barbara, Existence of entropy solutions for anisotropic quasilinear degenerated elliptic problems with Hardy potential, S´eMA J. 78 (2021), No. 4, 475-499.
M. B. Benboubker, R. Bentahar, M. E. Lekhlifi, H. Hjiaj, Unilateral Problem for Non-Coercive Neumann Elliptic Equations in p(x)-Anisotropic Sobolev Spaces; Asia Pac. J. Math., 11 (2024), No. 15, 1-27.
M. B. Benboubker, R. Bentahar, M. E. Lekhlifi, H. Hjiaj, Existence of renormalized solutions for some non-coercive anisotropic elliptic problems, Rend. Mat. Appl. (7), Vol 46 (2025), 181-212.
M. B. Benboubker, R. Bentahar, H. Chrayteh, H. Hjiaj, Existence results for non-coercive anisotropic Neumann boundary value problems with lower order terms, Palestine Journal of Mathematics, 2024, 13 (3), pp. 428-450.
M. B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), no. 3, 245-270.
A. Benkirane, B. El Haji, ad M. El Moumni, On the existence solutions for some nonlinear elliptic problem, Bol. Soc. Parana. Mat. (3) 40 (2022), No. 149, 1-8.
M. Ben Cheikh Ali and O. Guibe, Nonlinear and non-coercive elliptic problems with integrable data; Adv. Math. Sci. Appl. 16 (2006), no. 1, 275-297.
M. Bendahmane, M. Chrif and S. El Manouni, An Approximation Result in Generalized Anisotropic Sobolev Spaces and Application, Z. Anal. Anwend. 30 (2011), No. 3, 341-353.
P. Benilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J. L . Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations; Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, (1995), 241-273.
D. Blanchard, F. Murat and H. Redwane, Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems; J. Differential Equations, 177 (2001), 331-374.
L. Boccardo, T. Gallouet and F. Murat, Unicit´e de la solution de certaines equations elliptiques non lineaires; C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 1159-1164.
L. Boccardo, T. Gallouet and P. Marcellini, Anisotropic equations in L1, Differ. Integral Equ. 9 (1996), No. 1, 209-212.
L. Boccardo, D. Giachetti, J.-I. Diaz and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivations of nonlinear terms; J. Differential Equations 106 (1993), 215-237
G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data; Ann. Scuola Norm. Sup. Pisa Cl. Sci. Vol. 28 (4) (1999), 741–808
R. J. DiPerna and P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability; Ann. Math. 130 (1989), 321-366
R. Di Nardo and F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations; [J]. Archiv der Mathematik, 2014, 102(2), 141-153
R. Di Nardo, F. Feo and O. Guibe, Uniqueness result for nonlinear anisotropic elliptic equations; Adv. Differential Equations 18 (2013), no. 5-6, 433-458
Li, Fengquan, Anisotropic elliptic equations in Lm, J. Convex Anal. 8 (2001), No. 2, 417-422.
E. Hewitt and K. Stromberg, Real and abstract analysis; Springer-verlng, Berlin Heidelberg New York, 1965
J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires; Dunod et Gauthiers-Villars, Paris 1969
P.-L. Lions, Mathematical Topics in Fluid Mechanics; Vol. 1: Incompressible models, Oxford Univ. Press, Oxford, 1996
P.-L. Lions and F. Murat, Solutions renormalisees d’equations elliptiques; Manuscript for C.R.A.S. (juin 1992).
J. Leray and J.L. Lions, Quelques resultats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder; Bull. Soc. Math. France 93 (1965), 97-107
M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent; J. Math. Anal. Appl., 340 (2008), 687 - 698
F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Publ. Laboratoire d’Analyse Numerique, Univ. Paris 6, R 93023, 1993.
F. Murat, Equations elliptiques non Lineaires avec second membre L1 ou mesure, in Comptes Rendus du 26 eme Congres National d’Analyse Numerique, Les Karellis Juin 1994.
S. M. Nikolskiii, An imbedding theorem for functions with partial derivatives considered in different metrics; Izv. Akad. Nauk SSSR Ser. Mat. 22, 321-336 (1958). English translation, Amer. Math. Soc. Transl. 90 (1970), 27-4422
M. Ruzicka, Electrorheological fluids: modeling and mathematical theory; lecture notes in Mathematics 1748, Springerverlaag, Berlin, (2000)
L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces; BUMI Serie 8 (1988), 479-500
M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ric. Mat. 18 (1969), 3-24.
N. S. Trudinger, An imbedding theorem for H0(G) spaces; Studia Math. 50 (1974), 17-30.
V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity; Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



