The use of latest Kudryashov’s integration scheme for two networking models

  • Serife Muge Ege Ege University

Abstract

In this study, we concentrate on the equations which arised in network system and telecomminications. The newest Kudryashov method is used to construct traveling wave solutions of nonlinear electrical transmission equation and Lonngren equation. By means of Mathematica 11.3 package program, new types of solutions are obtained. The main goal of this study is to acquire the solitary wave solutions with reduced the number of computations.

Downloads

Download data is not yet available.

References

Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).

C. M. Dafermos, C. M., An abstract Volterra equation with application to linear viscoelasticity. J. Differential Equations 7, 554-589, (1970).

E. Misirli, Y. Gurefe, Exp-Function Method for Solving Nonlinear Evolution Equations. Mathematical and Computational Applications, 16 (1) (2011), 258-266.

T. Akturk, G. Yel, Modified exponential function method for the KP-BBM equation, Math. Nat. Sci, 6 (2020), 1-7.

O. Kirci, T. Akturk, H. Bulut, Simulation of Wave Solutions of a Mathematical Model Representing Communication Signals, Journal of the Institute of Science and Technology , 11 (4) (2021), 3086-3097.

M. Ekici, M. Unal, Application of the Exponential Rational Function Method to Some Fractional Soliton Equations, Emerging Applications of Differential Equations and Game Theory, (2020), 13-32.

B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative, Modern Physics Letters A, 34 (20)(2019), 1-16.

A. M. Shahoot, K. A. E. Alurrfi, M. O. M. Elmrid, A. M. Almsiri, A. M. H. Arwiniya, The (G′/G)-expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines, Journal of Taibah University for Science, 13 (1) (2019), 63-70.

S. Akcagil, T. Aydemir, Comparison between the (G′/G)− expansion method and the modified extended tanh method. Open Phys., 14 (2016) 88-94.

N. Aminakbari, Y. Gu, W. Yuan , Bernoulli (G’/G)-expansion method for nonlinear Schr¨odinger equation under effect of constant potential, Optical and Quantum Electronics, 53 (331) (2021), 1-11.

L. Akinyemi, M. S¸enol, O. S. Iyiola , Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method, Mathematics and Computers in Simulation, 182 (2021), 211-233.

H. Durur, A. Kurt, O. Tasbozan, New Travelling Wave Solutions for KdV6 Equation Using Sub Equation Method, Applied Mathematics and Nonlinear Sciences, 5 (1) (2020), 455-460.

L. Yan, H. M. Baskonus, C. Cattani, W. Gao Extraction of the gravitational potential and high-frequencywave perturbation properties of nonlinear(3+1)-dimensional Vakhnenko–Parkes equation via novel approach, Mathematical Methods in the Applied Sciences, 5 (1) (2022), 1-10.

M. Kaplan, A. Bekir, A. Akbulut , A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dynamics, 85 (2016), 2843-2850.

Y. Gurefe ,The generalized Kudryashov method for the nonlinear fractional partial differential equations with the betaderivative, Revista mexicana de f´ısica, 66 (6) (2020), 771-781.

S. M. Ege ,Traveling Wave Solutions For Two Physical Models via Extended Modified Kudryashov Method,Journal of the Institute of Science and Technology, 11 (1) (2021), 625-634.

S. Akcagil and T. Aydemir, A new application of the unified method, NTMSCI, 6 (2018) 185-199.

A.N. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations. Opt. Int. J. Light Electr. Opt., 206 (2020) 1-9.

N.A. Kudryashov, Solitary waves of the non-local Schrodinger equation with arbitrary refractive index, Optik, 231 (2021) 1-5.

Y. Yildirim, A. Biswas, A. H. Kara, P. Guggilla, S. Khan, A. K. Alzahrani and M.R. Belic, Highly dispersive optical solitons and conservation laws with Kudryashov’s sextic power-law of nonlinear refractive index, Optik, 240 (2021) 1.

E.M.E. Zayed,R.M.A. Shohib, M.E.M Alngar, A. Biswas,S. Khan, Y. Yildirim, H. Triki, A.K. Alzahrani and M.R. Belic,Cubic–quartic optical solitons with Kudryashov’s arbitrary form of nonlinear refractive index, Optik, 238 (2021) 1

S. M. Ege, Solitary Wave Solutions for Some Fractional Evolution Equations via New Kudryashov Approach, Revista mexicana de fısica, 68 (1) (2022), 1-11.

E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation, Eur. Phys. J. Plus , 129 (36) (2014), 1-10.

M. M. El-Borai, H. M. El-Owaidy, H. M. Ahmed, A. H. Arnous, Exact and soliton solutions to nonlinear transmission line model, Nonlinear Dyn, 87 (2017) , 767-773.

E. Fendzi-Donfack, J. P. Nguenang, L. Nana, Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation, Eur. Phys. J. Plus, 133(32)(2018), 1-11.

D. Kumar, A. R. Seadawy, R. Chowdhury, On new complex soliton structures of the nonlinear partial differential equation describing the pulse narrowing nonlinear transmission lines, Opt Quant Electron , 50 (108) (2018), 1-14.

M. T. Gulluoglu, New Complex Solutions to the Nonlinear Electrical Transmission Line Model, Open Phys, 17 (2019), 823-830.

W. Gao, M. Senel, G. Yel, H. M. Baskonus, B. Senel, New complex wave patterns to the electrical transmission line model arising in network system, AIMS Mathematics , 5(3)(2020), 1881-1892.

M. A. Kayuma, S. Arab, H. K. Barmana, M. A. Akbar, Soliton solutions to voltage analysis in nonlinear electrical transmission lines and electric signals in telegraph lines, Journal of the Institute of Science and Technology , 18 (2020), 1-10.

O. Ozer, H. M. Baskonus, H. Bulut, I. Amirali, G. Yel, A new survey to the nonlinear electrical transmission line model, International Journal of Cognitive Computing in Engineering, 2 (2021), 208-214.

K. J. Wang, G. D. Wang, Periodic solution of the (2+1)- dimensional nonlinear electrical transmission line equation via variational method , Results in Physics , 20 (2021), 1-2.

A. Zulfiqar,J. Ahmad, A. Rani, Q. M. Hassan, Wave Propagations in Nonlinear Low-Pass Electrical Transmission Lines through Optical Fiber Medium, Mathematical Problems in Engineering , 2022 (2022), 1-16.

K. K. Ali , M. S. Mehanna, On some new analytical solutions to the (2+1)-dimensional nonlinear electrical transmission line model, Eur. Phys. J. Plus , 137 (280) (2022), 1-12.

K. E. Lonngren, H. C. S. Hsuan and W. F. Ames, On the soliton, invariant, and shock solutions of a fourth-order nonlinear equation.J. Math. Anal. Appl., 52 (1975) 538-545.

H. M. Baskonus, H. Bulut, T. A. Sulaiman, New Complex Hyperbolic Structures to the Lonngren Wave Equation by Using Sine Gordon Expansion Method, Applied Mathematics and Nonlinear Sciences , 4(1)(2019), 129-138.

S. Duran, Travelling wave solutions and simulation of the Lonngren wave equation for tunnel diode, Optical and Quantum Electronic , 53(458) (2021), 1-9.

H. K. Barman, A. R. Seadawy, R. Roy, M. A. Akbar, M.H. Raddad, Rational closed form soliton solutions to certain nonlinear evolution equations ascend in mathematical physics,Results in Physics, 27 (2021), 1-12.

Published
2025-08-24
Section
Research Articles

Funding data