General and optimal decay result for a viscoelastic Timochenko beam fixed into a moving base
Abstract
In this paper we consider a multidimensional thermoviscoelastic system of Bresse type where the heat conduction is given by Green and Naghdi theories. For a wider class of relaxation functions, We show that the dissipation produced by the memory effect is strong enough to produce a general decay results. We establish a general decay results, from which the usual exponential and polynomial decay rates are only special cases.
Downloads
References
Aassila M., Cavalcanti M. M. and Domingos Cavalcanti V. N., Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term, Calc. Var. Partial Differ. Equ. 15 (2002) 155–180.
Alabau-Boussouira. F. and Cannarsa P., A general method for proving sharp energy decay rates for memory dissipative evolution equations, C. R. Acad. Sci. Paris, Ser. I, 347 2009, 867–872.
Almeida Junior D. d. S., Santos M. L. and Munoz Rivera J. E., Stability to 1-D thermoelastic Timoshenko beam acting on shear force, Zeitschrift f¨ur Angew. Math. und Phys. 65, 6 (2014), 1233–1249.
Ammar-Khodja F., Benabdallah A., Munoz Rivera J. E. and Racke R., Energy decay for Timoshenko systems of memory type, J. Differ. Equ. 194, 1 (2003), 82–115.
Apalara T. A., Messaoudi S. A. and Keddi A. A., On the decay rates of Timoshenko system with second sound, Math. Methods Appl. Sci. 39, 10 (jul 2015), 2671–2684.
Arnold V. I., Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics. Springer New York, New York, NY, 1989.
Ayadi M. A., Bchatnia A., Hamouda M. and Messaoudi S. A., General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal. 4, 4 (2015), 263–284.
Berkani A., Stabilization of a viscoelastic rotating Euler–Bernoulli beam, Math. Method Appl. Sci., 41 (2018), 2939–2960.
Berkani A., Tatar N. E. and Kelleche A., Vibration control of a viscoelastic translational Euler-Bernoulli beam, J. Dyn. Control. Syst., 2018, 24(1) (2018), 167-199.
Berkani A., Tatar. N. E. and Khemmoudj A., Control of a viscoelastic translational Euler-Bernoulli beam, Math. Methods Appl. Sci., 40 (2017), 237-254.
Berkani A. and Tatar N. E., Stabilization of a viscoelastic Timoshenko beam fixed into a moving base, Math. Model. Nat. Phenom. 14 (2019) 501.
Berkani A., Tatar N. E. and A. Khemmoudj A., Control of a viscoelastic translational Euler-Bernoulli beam, Math. Meth. Appl. Sci. 40 (2017) 237-254.
Cavalcanti M. M. , Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation, Discrete Contin. Dyn. Syst. 8 (2002) 675–695.
Cavalcanti M. M., Domingos Cavalcanti V. N. and Martinez P., General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal. 68 (2008) 177–193.
[5] Christensen R. M., Theory of viscoelasticity: an introduction, New York/London: Academic Press (1982).
[6] Coleman B. D. and Noll W., Foundations of linear viscoelasticity, Rev. Modern Phys. 33 (1961) 239–49.
Dadfarnia M. , Jalili N., Xian B. and Dawson D. M., Lyapunouv based vibration control of translational Euler-Bernoulli beams using the stabilizing effect of beam damping mechanisms, J. Vib. Control 10 (2004) 933–961.
De Querioz M. S., Dawson D. M., Agrawal M. and Zhang F., Adaptive nonlinear boundary control of a flexible link robot arm, IEEE Trans. Rob. Autom. 15 (1999) 779–787.
Dafarnia M., Jalili N., Liu Z. and Dawson D. K., A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators, Journal of Dynamic Systems, Measurement and Control, 126(2) 2004, 347-358.
Dafarnia M., Jalili N., Liu Z. and Dawson D. K., An observer-based piezoelectric control of flexible cartesian robot arms: theory and experiment, Control Engineering Practice, 2004, 12:1041-1053.
Dafarnia M., Jalili N., Liu. Z. and Dawson D. K., Lyapunouv based vibration control of translational Euler–Bernoulli beams using the stabilizing effect of beam damping mechanisms, Journal of Vibration and Control, 10, 2004, 933-961.
Daoulatli M., Lasiecka I. and Toundykov D., Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions, Discrete Contin. Dyn. Syst., 2 (2009), 67–95.
Fabrizio M. and A. Morro A., Mathematical problems in linear viscoelasticity, SIAM Stud. Appl. Math.
Feng B., On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Dyn. Syst. 37, 9 (2017), 4729–4751.
Feng B. and Yang X. G., Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal. 96, 4 (2017), 606–625.
Ge S. S., Lee T. H. and Gong J. Q., A robust distributed controller of a single-link SCARA/Cartesian smart materials robot, Mechatronics, 1999, 9:65-93.
Ge S. S., Lee T. H. and Zhu G.(1996), Energy-based robust controller design for multi-link flexible robots, Mechatronics, 1996, 6:779–798.
Ge S. S., Lee T. H. and Zhu G.(1997), A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model, Journal of Robotic Systems, 1997, 14:165-178.
Ge S. S., Lee T. H. and Zhu G.(1998), Asymptotically stable end-point regulation of a flexible SCARA Cartesian robot, IEEE ASME Transactions on Mechatronics, 3(2):138-144.
A. Guesmia and S. A. Messaoudi, On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Comput. 206, 2 (2008), 589–597.
Guesmia A. and Messaoudi S. A., On the stabilization of Timoshenko systems with memory and different speeds of wave propagation, Appl. Math. Comput. 219, 17 (2013), 9424–9437.
Guesmia A., Messaoudi S. A. and Soufyane A., Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems, Electron. J. Differ. Equations 2012, 193 (2012), 1-45.
Guesmia A. and Soufyane A., On the stability of Timoshenko-type systems with internal frictional dampings and discrete time delays, Appl. Anal. 96, 12 (2017), 2075–2101.
Jalili N., Dadfarnia M., Hong F. and S.S. Ge, Adaptive non model-based piezoelectric control of flexible beams with translational base, Proc. of the American Control Conference Anchorage, AK, May 8-1, 5 (2002) 3802–3807.
Jin K. P., Liang J. and Xiao T. J., Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differ. Equ. 257, 5 (2014), 1501–1528. doi:10.1016/J.JDE.2014.05.018.
Kafini M., Messaoudi S. A. and Mustafa M. I., Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay, J. Math. Phys. 54, 10 (2013), 101503.
Kafini M., Messaoudi S. A., Mustafa M. I. and Apalara T., Well-posedness and stability results in a Timoshenko-type system of thermoelasticity of type III with delay, Zeitschrift fur Angew. Math. und Phys. 66, 4 (2015), 1499–1517.
Khemmoudj A., General decay of the solution to a nonlinear viscoelastic beam with delay, Partial Differential Equations and Applications, https://doi.org/10.1007/s42985-023-00238-y.
Khemmoudj A. and Djaidja I., General decay for a viscoelastic rotating Euler-Bernoulli beam, Communications on Pure and Applied Analysis, 19 (7) 2020, 3531–3557 .
Khemmoudj A. and Mokhtari Y., General decay of the solution to a nonlinear viscoelastic modified Von-Karman system with delay, Discrete and continuous dynamical systems series A, Volume 39, Number 7, July 2019, doi:10.3934/dcds.2019155.
Lasiecka I. and Doundykov D., Energy decay rates for the semilinear wave equation with nonlinear localized damping and a nonlinear source, Nonlinear Analysis, 64, (2006), 1757–1797.
Lasiecka I. and Tataru D., Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations, 6, 1993, 507–533.
Lasiecka I. and Wang X., Intrinsic decay rate estimates for semilinear abstract second order equations with memory, in: New Prospects in Direct, Inverse and Control Problems for Evolution Equations, in: Springer INdAM, Springer, Cham, 10, 2014, 271–303.
Lekdim B. and Khemmoudj A., General decay of energy to a nonlinear viscoelastic two-dimensional beam, Applied Mathematics and Mechanics, 39 (2018), 1661-1678.
Lekdim B. and Khemmoudj A., Existence and general decay of solution for nonlinear viscoelastic two-dimensional beam with a nonlinear delay, Ricerche di Matematica, (2021), 1-22.
Luo. Z. H and Guo. B. Z., Shear force feedback control of a single-link flexible robot with a revolute joint, emph IEEE Transactions on Automatic Control, 1997, 42 (1997),53–65.
Luo Z. H., Kitamura N. and Guo B. Z., Shear force feedback control of flexible robot arms, IEEE Transactions on Robotics and Automation, 11 (1995), 760-765.
Malacarne A. and Munoz Rivera J. E., Lack of exponential stability to Timoshenko system with viscoelastic Kelvin-Voigt type, Zeitschrift fur Angew. Math. und Phys. 67, 3 (2016), 67.
Messaoudi S. A. and Mustafa M. I.,On the control of solutions of viscoelastic equations with boundary feedback, Nonlinear Anal: Real World Applications. 2009;10:3132-3140.
Messaoudi S. A. and Hassan J. H., General and optimal decay in a memory-type Timoshenko system, J. Integr. Equations Appl. (to appear).
S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dyn. Syst. Appl. 18 (2009), 457–468.
Messaoudi S. A. and Mustafa M. I., general stability result in a memory-type Timoshenko system, Commun. Pure 12, 2 (2013), 957–972.
Messaoudi S. A. and Said-Houari B., Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl. 360, 2 (2009), 459–475.
Morgul O., Dynamic boundary control of the Timochenko beam, Automatica 28 (1992) 1255-1260.
Munoz Rivera J. E. and Fernandez Sare H. D., Stability of Timoshenko systems with past history, J. Math. Anal. Appl. 339, 1 (2008), 482–502.
Munoz Rivera J. E., Racke R. and al., Magneto-thermo-elasticity-large-time behavior for linear systems, Advances in Differential Equations 6, 3 (2001), 359–384.
Mustafa M. I., General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl. (2017). doi:10.1016/j.jmaa.2017.08.019.
Mustafa M. I. and Messaoudi S. A., General energy decay rates for a weakly damped Timoshenko system, J. Dyn. Control Syst. 16 (2010) 211–226.
Tatar N. E., Stabilization of a viscoelastic Timoshenko beam, Appl. Anal. Int. J. 92 (2013) 27–43.
Tatar N. E., Exponential decay for a viscoelastically damped Timoshenko beam, Acta Math. Sci. 33 (2013) 505–524.
Tian X. and Zhang Q., Stability of a Timoshenko system with local Kelvin-Voigt damping, Zeitschrift fur Angew. Math. und Phys. 68, 1 (2017), 20.
Timoshenko P. S., On the correction for shear of the differential equation for transverse vibrations of prismatic bars, London, Edinburgh, Dublin Philos. Mag. J. Sci. 41, 245 (1921), 744–746.
Zhu G., Ge S. S. and Lee T. H., Variable structure regulation of a flexible arm with a translational base. Proc. of the 36th Conference on Decision and Control, San Diego, California, USA, 2 (1997) 1361–1366.
Messaoudi S. A. and Mustafa M. I., A general stability result in a memory-type Timoshenko system, Commun. Pure Appl. Anal. 12 (2013) 957–972.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



