On CSI-ξ^˔-Riemannian submersions from Sasakian manifold
Abstract
In the present paper, we study the Clairaut semi-invariant \xi-Riemannian submersions (CSI- \xi-Riemannian submersions, in short) from Sasakian manifolds onto Riemannian manifolds. We investigate fundamental results pertaining to the geometry of introduced submersions. We also work out integrability conditions and totally geodesicness of distributions defined in such submersions. Finally, we construct a non-example of CSI -\xi Riemannian submersion from 5 dimensional Sasakian manifold onto Riemannian.
Downloads
References
M. A. Akyol, R. Sari and E. Aksoy, Semi-invariant ξ⊥-Riemannian submersions from Almost Contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14(5), 1750075, (2017).
M. A. Akyol and R.Sari On semi-slant ξ⊥ Riemannian submersions, Mediterr. J. Math. 14, 234, (2017). https://doi.org/10.1007/s00009-017-1035-2,
D. Allison, Lorentzian Clairaut submersions, Geom. Dedicata. 63(3), 309-319, 1996.
C. Altafini, Redundand robotic chains on Riemannian submersions, IEEE Transaction on Robotics and Automation 20(2), 335-340, (2004).
K. Aso and S. Yorozu, A generalization of Clairaut’s theorem and umbilic foliations, Nihonkai Mathematical Journal, 2(2), 139-153, (1991).
P. Baird and J.C. Wood, Harmonic Morphism Between Riemannian Manifolds, Oxford Science Publications, Oxford (2003).
R. L. Bishop Clairaut submersions. Differential Geometry, (In Honor of Kentaro Yano) Tokyo, Kinokuniya, 21-31, (1972).
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203. Birkhauser Boston, Basel, Berlin (2002).
J. P. Bourguignon and H. B. Lawson, A mathematician’s visit to Kaluza-Klein theory, Rend. Semin. Mat. Univ. Politec. Torino Special Issue, 143-163, (1989).
A. Gray Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16, 715-737, (1967).
S. Ianus and M. Visinescu, Space-time compactication and Riemannian submersions, In The Mathematical Heritage of C. F. Gauss, ed . G. R assias ( World Scientific, River Edge) 358-371, (1991).
S. Kumar, R. Prasad and S. Kumar, Clairaut semi-invariant Riemannian maps from almost Hermitian manifolds, Turk. J. Math., 46(4) , 1193-1209, (2022).
S. Kumar, S. Kumar and R. Prasad, A note on CSI -ξ⊥ Riemannian submersion from Kenmotsu manifolds onto Riemannian manifolds, Bulletin of the Transilvania University of Brasov Series III: Mathematics and Computer Science, 64(2) 151-166, (2022).
J. Lee, JH. Park, B. Sahin and DY. Song, Einstein conditions for the base of anti-invariant Riemannian submersions and Clairaut submersions, Taiwanese Journal of Mathematics 19(4), 1145-1160, (2015).
JW. Lee, Anti-invariant ξ⊥-Riemannian submersion from almost contact manifolds, Hacettepe J. Math. Stat.,42(2), 231-241, (2013).
Li Y., R. Prasad, A. Haseeb, S. Kumar and S. Kumar, A Study of Clairaut semi-invariant Riemannian maps from Cosymplectic manifolds, Axioms, 11, 503 (2022).
B. O’Neill, The fundamental equations of a submersion, Michigan Mathematical Journal 13, 458-469 (1966).
R. Prasad and S. Kumar, Semi-slant Riemannian maps from almost contact metric manifolds into Riemannian manifolds, Tbilisi Mathematical Journal 11(4), 19-34 (2018).
R. Prasad, S. Kumar, S. Kumar and AT. Vanli, On Quasi-Hemi-Slant Riemannian Maps, Gazi University Journal of Science 34(2), 477-491 (2021).
R. Prasad, PK. Sigh and S. Kumar, On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds, Afrika Matematika 32(3), 403-417, (2021).
R. Prasad, M.A. Akyol, PK. Sigh and S. Kumar, On Quasi bi-slant sub-mersions from Kenmotsu manifolds onto any Riemannian manifolds, Journal of Mathematical Extension,16(6) 1-25, (2022).
B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsiever (2017).
B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Open Mathematics, 8(3), 437-447 (2010).
B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie 93-105, (2011).
B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56(1), 173-183, (2013).
B. Sahin, Circles along a Riemannian map and Clairaut Riemannian maps, Bulletin of the Korean Mathematical Society 54 (1), 253-264, (2017).
H M. Tastan and S. Gerdan, Clairaut anti-invariant submersions from Sasakian and Kenmotsu manifolds, Mediterranean Journal of Mathematics 14(6), 235-249 (2017).
H M. Tastan and S.G. Aydin, Clairaut anti-invariant submersions from cosymplectic manifolds, Honam Mathematical Journal 41(4), 707-724 (2019).
B. Watson, Almost Hermitian submersions, J. Differ. Geom. 11(1), 147-165, (1976).
A. Yadav and K. Meena, Clairaut anti-invariant Riemannian maps from Kahler Manifolds, Mediterranean Journal of Mathematics19(3), 1-19, (2022).
K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore ( 1984).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).