Non-linear New Product ½ (AB*C+CB*A) Derivations on *-Algebras
Abstract
Let A be a prime -algebra with unit I and a nontrivial projection.
Then the map : A ! A satises in the following condition
(fABCg) = f(A)BCg + fA(B)Cg + fAB(C)g
where fABCg = 1
2 (ABC + CBA) for all A;B;C 2 A, is additive.
Moreover, if (I) is self-adjoint, then is a -derivation.
Downloads
References
Christensen, E., Derivitions of nest algebras, Ann. Math. 229, 155-161 (1977)
Dai, L., Lu, F., Nonlinear maps preserving *-Jordan products, J. Math. Anal. Appl. 409, 180-188 (2014)
Darvish, V., Nouri, M., Razeghi, M., Taghavi, A. Maps preserving Jordan and *-Jordan triple product on operator *-algebras, Bulletin of the koream Mathematical Society. 56, 451-459 (2019)
Darvish, V., Rohi, H., Taghavi, A., Nanlinear *-Jordan derivation on von Neumann algebras, Linear and Multilinear Algebra. 64, 426-439 (2016)
Darvish, V., Rohi, H., Taghavi, A., Additivity of maps preserving products AP +- PA* on C*-algebras, Mathematica Slovaca. 67, 213-220 (2017)
Fang, X., Li, C., Lu, F., Nonlinear mappings preserving products XY +- Y X* on factor van Neumann algebras, Linear Algebra Appl. 438, 2339-2345 (2013)
Herstein, I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104-1110 (1957)
Ma, D., Pang, Y., Zhang, D., The second nonlinear mixed Jordan triple derivable mapping on factor van Neumann algebras, Bulletin of the Iranian Mathematical Society. 48, 951-962 (2022)
Sakai, S., Derivations of W*-algebras, Ann. Math. 83, 273-279 (1966)
Semrl, P., Additive derivations of some operator algebras, Illinois J. Math. 35, 234-240 (1991)
Semrl, P., Ring derivations on standard operator algebras, J. Funct. Anal. 112, 318-324 (1993)
Semrl, P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120, 515-519 (1994)
Taghavi, A., Tavakoli, E., Additivity of maps preserving Jordan triple products on prime C*-algebras, Annals of Functional Analysis. Springer. 11, 391-405 (2020)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).