Conformal bi-slant ξ⊥-Riemannian submersion: a note in contact geometry
Résumé
This study explores conformal bi-slant ξ⊥-Riemannian submer- sion where the total manifold is a contact metric manifold, more specifically a Sasakian manifold. To illustrate this study, few non-trivial examples are discussed. Meanwhile, we addressed the conditions for integrability of anti- invariant and slant distributions and determine the conditions for the map that must be met in order to be totally geodesic. Furthermore, some decomposition theorems for the fibres as well as for the total space are discussed.
Téléchargements
Références
M. A. Akyol and Y. Gunduzalp, Hemi-slant submersions from almost product Riemannian manifolds, Gulf J. Math 4(3) (2016) 15-27.
M. A. Akyol, Conformal semi-slant submersions, International Journal of Geometric Methods in Modern Physics 14(7) (2017) 1750114
M. A. Akyol, R. Sarı and E. Aksoy, Semi-invariant ?-Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14(5) (2017) 1750074.
M. A. Akyol and B. Şahin, Conformal slant submersions, Hacettepe Journal of Mathematics and Statistics 48(1) (2019) 28-44.
M. A. Akyol and B. Şahin. Conformal anti-invariant submersions from almost Hermitian manifolds. Turkish Journal of Mathematics 2016; 40: 43-70.
M. A. Akyol and B. Şahin. Conformal semi-invariant submersions. Communications in Contemporary Mathematics 2017; 19: 1650011.
S. Ali and T. Fatima, Generic Riemannian submersions. Tamkang Journal of Mathematics 2013; 44 (4): 395-409.
J. P. Bourguignon and H. B. Lawson Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys. 79 (1981), no. 2, 189–230. http://projecteuclid.org/euclid.cmp/1103908963
J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 42 (1) (2000) 125-138.
B. Y. Chen , Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
C. Dunn, P. Gilkey and J. H. Park, The spectral geometry of the canonical Riemannian submersion of a compact Lie group, J. Geom. Phys. 57 (10), 2065-2076, 2007.
I. K. Erken and C. Murathan, Slant Riemannian submersions from Sasakian manifolds, Arap J. Math. Sci. 22(2) (2016) 250-264.
M. Falcitelli , S. Ianus, and A. M. Pastores, Riemannian submersions and related topics, World Scientific Publishing Co., 2004.
P. Frejlich, Submersions by Lie algebroids, J. Geom. Phys. 137, 237-246, 2019.
B. Fuglede, Harmonic morphisms between Riemannian manifolds. Annales de l’institut Fourier (Grenoble) 1978; 28: 107-144.
Y. Gunduzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstratio Mathematica 49(3) (2016) 345-356.
Y. Gunduzalp and M. A. Akyol., Conformal slant submersions from cosymplectic manifolds, Turkish Journal of Mathematics 48 (2018), 2672-2689.
S. Ianus, A. M. Ionescu, R. Mazzocco and G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, arXiv: 1102.1570v1 [math. DG].
S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, The mathematical heritage of C. F. Gauss, 358–371, World Sci. Publ., River Edge, NJ, 1991.
S. Ianus and M. Vi. sinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317–1325. http://stacks.iop.org/0264-9381/4/1317
T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions. Journal of Mathematics of Kyoto University 1979; 19: 215-229.
M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000) 6918-6929
B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. http://projecteuclid.org/euclid.mmj/1028999604
B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York-London 1983.
K. S. Park, H-semi-invariant submersions, Taiwan. J. Math., 16(5), (2012), 1865-1878.
R. Prasad, M. A. Akyol, P. K. Singh, S. Kumar, On Quasi Bi-Slant Submersions from Kenmotsu Manifolds onto any Riemannian Manifolds, Journal of Mathematical ExtensionVol. 16, No. 6, (2022) (7)1-25 URL: https://doi.org/10.30495/JME.2022.1588 ISSN: 1735-8299.
S. Kumar, S. Kumar, S. pandey, R. Prasad. Conformal hemi-slant submersions from almost Hermitian manifolds. Communications of the Korean Mathematical Society 2020; 35: 999-1018.
B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math. 3 (2010) 437-447.
B. Sahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2011) 173-183.
B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie. 1 (2011) 93-105.
B. Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Elsevier, Academic Press,(2017)
S. A. Sepet, Bi-slant ? Riemannian submersions, Hacet. J. Math. Stat. Volume 51 (1) (2022), 8 – 19 https://doi.org/10.15672/hujms.882603
B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147–165. http://projecteuclid.org/euclid.jdg/1214433303
B. Watson, G, G’-Riemannian submersions and nonlinear gauge field equations of general relativity, in Global analysis–analysis on manifolds, 324–349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).