On the generalized Apostol-Kolodner differential equation of the second-order
Resumo
This paper concerns another approach for solving the matrix differential equations of the second order $X''(t)=AX'(t)+BX(t)$, where $A$, $B$ are square matrices of order ${d\times d}$. Such approach is based on some properties of matrix square root and the linear difference equation. We establish various new results and explicit formulas for the solutions of this type of matrix differential equations. Moreover, because of the non-commutativity condition between $A$ and $B$, the matrix fundamental system will play an important role. Finally, our results and their robustness, are validated by providing some examples and applications.
Downloads
Referências
J. Abderraman Marrero, R. Ben Taher, Y. El Khatabi, M. Rachidi, On explicit formulas of the principal matrix pth root by polynomial decompositions, Appl. Math. Comput. 242 (2014) 435–443. https://doi.org/10.1016/j.amc.2014. 05.110.
T. M. Apostol, Explicit Formulas for Solutions of the Second-Order Matrix Differential Equation Y ′′ = AY , Am. Math. Mon. 82 (1975) 159. https://doi.org/10.2307/2319663.
Z. P. Bazant, Matrix differential equation and higher-order numerical methods for problems of non-linear creep, viscoelasticity and elasto-plasticity, Int. J. Numer. Methods Eng. 4 (1972) 11–15. https://doi.org/10.1002/nme. 1620040104.
R. Ben Taher, M. Mouline, M. Rachidi, Fibonacci-horner decomposition of the matrix exponential and the fundamental system of solutions, Electron. J. Linear Algebr. 15 (2006) 178–190. https://doi.org/10.13001/1081-3810.1228.
R. Ben Taher, M. Rachidi, On the matrix powers and exponential by the r-generalized Fibonacci sequences methods: The companion matrix case, Linear Algebra Appl. 370 (2003) 341–353. https://doi.org/10.1016/S0024-3795(03)00418-X.
R. Ben Taher, M. Rachidi, Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula, Appl. Math. Comput. 290 (2016) 267–280. https://doi.org/10.1016/j.amc. 2016.06.006.
R. Ben Taher, M. Rachidi, Linear recurrence relations in the algebra of matrices and applications, Linear Algebra Appl. 330 (2001) 15–24. https://doi.org/10.1016/S0024-3795(01)00259-2.
R. Ben Taher, M. Rachidi, Linear matrix differential equations of higher-order and applications, Electron. J. Differ. Equations. 2008 (2008) 1–12.
S. Campbell, Singular Systems of Differential Equations; Pitman Advanced Pub, 1982.
H. W. Cheng, S. S. T. Yau, More explicit formulas for the matrix exponential, Linear Algebra Appl. 262 (1997) 131–163. https://doi.org/10.1016/S0024-3795(97)80028-6.
F. Dubeau, W. Motta, M. Rachidi, O. Saeki, On weighted r-generalized Fibonacci sequences, Fibonacci Q. 35 (1997) 102–110.
B. El Wahbi, M. Mouline, M. Rachidi, Solving nonhomogeneous recurrence relations of order r by matrix methods, Fibonacci Q. 40 (2002) 106–117.
L. H. Erbe, Q. Kong, S. Ruan, Kamenev Type Theorems for Second Order Matrix Differential Systems, Proc. Am. Math. Soc. 117 (1993) 957. https://doi.org/10.2307/2159522.
C. M. Gordon, The Square Root Function of a Matrix, Mathematics Theses, Department of Mathematics and Statistics, College of Arts and Sciences, Georgia State University, USA, 2007.
F. R. Gantmacher, Theory of matrix, Chelsea Publishing Company, New York, 1959.
N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
G. I. Kalogeropoulos, A. D. Karageorgos, A. A. Pantelous, On the solution of higher order linear homogeneous complex σ-α Descriptor matrix differential systems of Apostol-Kolodner type, J. Franklin Inst. 351 (2014) 1756–1777. https: //doi.org/10.1016/j.jfranklin.2013.12.012.
I. I. Kolodner, On exp(tA) with A satisfying a polynomial, J. Math. Anal. Appl. 52 (1975) 514–524. https://doi.org/ 10.1016/0022-247X(75)90076-1.
C. Levesque, On m-th order linear recurrences, Fibonacci Q. 23 (1985) 290–293.
M. Mouline, M. Rachidi, Application of Markov chains properties to r-generalized Fibonacci sequences. Fibonacci Q. 37 (1999) 34–38.
M. Mouline, M. Rachidi, Suites de Fibonacci generalisees, Theoreme de Cayley-Hamilton et chaines de Markov, Rendiconti Sem. Mat. di Messina, Serie II, Tomo XIX, No. 4 (1996/97) 107-115.
A. A. Pantelous, A. D. Karageorgos, G. I. Kalogeropoulos, A new approach for second-order linear matrix descriptor differential equations of Apostol-Kolodner type, Math. Methods Appl. Sci. 37 (2014) 257–264. https://doi.org/10. 1002/mma.2824.
A. A. Pantelous, A. D. Karageorgos, G. I. Kalogeropoulos, Transferring instantly the state of higher-order linear descriptor (Regular) differential systems using impulsive inputs, J. Control Sci. Eng. 2009 (2009) 1–32. https://doi.org/10.1155/ 2009/562484.
E. J. Putzer, Avoiding the Jordan Canonical Form in the Discussion of Linear Systems with Constant Coefficients, Am. Math. Mon. 73 (1966) 2–7. https://doi.org/10.1080/00029890.1966.11970714.
J. C. Ruiz-Claeyssen, T. Tsukazan, Dynamic solutions of linear matrix differential equations, Q. Appl. Math. 48 (1990) 169–179. https://doi.org/10.1090/qam/1040240.
R. P. Stanley, S. Fomin, Enumerative Combinatorics, Cambridge University Press, 1999. https://doi.org/10.1017/ CBO9780511609589.
Y. G. Sun, F. W. Meng, Oscillation results for matrix differential systems with damping, Appl. Math. Comput. 175 (2006) 212–220. https://doi.org/10.1016/j.amc.2005.08.003.
L. Verde-Star, Operator Identities and the Solution of Linear Matrix Difference and Differential Equations, Stud. Appl. Math. 91 (1994) 153–177. https://doi.org/10.1002/sapm1994912153.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).