µ-Statistical Relative Uniform Convergence of Sequences of Functions

µ-Statistical Relative Uniform Convergence of Sequences of Functions

  • Binod Chandra Tripathy Tripura University
  • Prof. Rupanjali Goswami

Abstract

In this paper we have introduced the notion of convergence in -density and -statistical relative uniform convergence of sequences of functions defined on a compact subset  of real numbers, where  is finitely additive measure. We introduce the concept -statistical relative uniform convergence which inherits the basic properties of uniform convergence.

Downloads

Download data is not yet available.

Author Biography

Binod Chandra Tripathy, Tripura University

Department of Mathematics

Professor

References

E.W. Chittenden, Relatively uniform convergence of sequences of functions. Transaction of the American Mathematical Society, 15, 197-201(1914).

J. Connor, The statistical and strong p-Cesàro convergence of sequences. Analysis, 8, 47- 63 (1988).

J. Connor, Two valued measures and summability. Analysis, 10, 373-385(1990).

J. Connor, R-type summability methods, Cauchy criteria, P-sets and statistical convergence, Proc.Amer. Math. Soc., 115, 319-327 (1992).

D. Datta, B. C. Tripathy, Statistical convergence of double sequences of complex uncertain variables, Jour. Appl. Math. Inf. ,40 (1-2), 191-204(2022).

K. Demirci and S. Orhan, Statistically relatively uniform convergence of positive linear operators. Results Math., 69, 359–367 (2016).

K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference double sequence of positive linear functions, Ric. Mat. (2021) DOI:10.1007/s11587-021-00613- 0(online published).

K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference sequence of positive linear functions. Trans. A. Razmadze Math. Inst. 176(1), 37-43, (2022).

K. R. Devi and B. C. Tripathy, On relative uniform convergence of double sequences of functions. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 92(3), 367–372 (2022), https://doi.org/10.1007/s40010-022-00768-x.

F. Dirik F and P.O. Sahin, Statistical relatively equal convergence and Korovkin-type approximation theorem. Results Math.,, 72, 1613–1621 (2017).

O. Duman and C. Orhan, μ-Statistically convergent function sequences. Czech. Math. Jour., 54(2), 413-422 (2004).

H. Fast, Sur la convergence statistique. Colloquim Mathematicum, 2, 241-244 (1951).

J.A. Fridy, On statistical convergence. Analysis, 5, 301-314 (1985).

E.H. Moore, An Introduction to a Form of General Analysis’, The New Haven Mathematical Colloquium, Yale University Press, New Haven (1910).

S. Saha, B. C. Tripathy, Statistically convergent difference sequences of complex uncertain variables. Jour. Uncertain Syst., 15(2),2022; https://doi.org/10.1142/S1752890922500106.

T. Sálat, On statistically convergent sequences of real numbers. Math. Slovaca, 30, 139- 150 (1980).

M. Sen, R. Haloi and B.C. Tripathy, -Statistically convergent function sequences in probabilistic normed linear space, Proyecciones J. Math., 38(5), 1039-1056 (2019).

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotiqu.’ Colloq. Math., 2, 73-74 (1951).

D. Rath and B.C. Tripathy, Matrix maps on sequence spaces associated with sets of integers. Ind. J. pure Appl. Math., 27(2), 197-206 (1996).

B.C. Tripathy, Matrix transformations between some classes of sequences. Jour. Math. Anal. Appl., 206, 448-450 (1997).

B.C. Tripathy and R. Goswami, Statistically convergent multiple sequences in probabilistic normed spaces. U.P.B. Science Bulletin, Series A, 78(4), 83-94 (2016).

B.C. Tripathy and P.K. Nath, Statistical convergence of complex uncertain sequences. New Mathematics and Natural Computation, 13(3), 359-374 (2017).

B.C. Tripathy and M. Sen, On generalized statistically convergent sequences. Ind. J. pure Appl. Math., 32(11), 1689–1694 (2001).

Published
2025-02-01
Section
Research Articles