Stress-difference index for graphs

Resumo

The stress of a vertex is a node centrality index, which has been introduced by Shimbel (1953). The stress of a vertex in a graph is the number of geodesics (shortest paths) passing through it. A topological index of a chemical structure (graph) is a number that correlates the chemical structure with chemical reactivity or physical properties. In this paper, we introduce a new topological index for graphs called stress-difference index using stresses of vertices. Further, we establish some inequalities, prove some results and compute stress-difference index for some standard graphs. Also, we found that there is a positive correlation between the stress-difference index and some physical properties of lower alkanes.

Downloads

Não há dados estatísticos.

Biografia do Autor

R. Rajendra, Mangalore University

Department of Mathematics

Dr Siva Kota Reddy Polaepalli, JSS Science and Technology University

Departmnet of Mathematics

C. N. Harshavardhana, Government First Grade College for Women

Department of Mathematics

Referências

K. Bhargava, N.N. Dattatreya, and R. Rajendra, On stress of a vertex in a graph, Preprint, 2020.

F. Harary, Graph Theory, Addison Wesley, Reading, Mass, 1972.

M. Indhumathy, S. Arumugam, Veeky Baths and Tarkeshwar Singh, Graph theoretic concepts in the study of biological networks, Applied Analysis in Biological and Physical Sciences, Springer Proceedings in Mathematics & Statistics, 186 (2016), 187-200.

D. E. Needham, I. C. Wei and P. G. Seybold, Molecular modeling of the physical properties of alkanes, J Am Chem Soc., 110 (1988), 4186-4194.

R. Rajendra, P. S. K. Reddy and I. N. Cangul, Stress Indices of Graphs,Advn. Stud. Contemp. Math., 31 (2021), 163-173.

Rajendra, R., Siva Kota Reddy, P. and Harshavardhana, C. N., Tosha Index for Graphs, Proceedings of the Jangjeon Math. Soc., 24(1), 141-147, (2021).

Rajendra, R., Siva Kota Reddy, P. and Cangul, I. N., Stress Indices of Graphs, Advn. Stud. Contemp. Math., 31(2), 163-173, (2021).

Rajendra, R., Bhargava, K., Shubhalakshmi, D. and Siva Kota Reddy, P., Peripheral Harary Index of Graphs, Palest. J. Math., 11(3), 323-336, (2022).

Rajendra, R., Siva Kota Reddy, P. and Prabhavathi, M., Computation of Wiener Index, Reciprocal Wiener index and Peripheral Wiener Index Using Adjacency Matrix, South East Asian J. Math. Math. Sci., 18(3), 275-282, (2022).

Siva Kota Reddy, P., Prakasha, K. N., and Cangul, I. N., Randić Type Hadi Index of Graphs, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics, 40(4), 175-181, (2020).

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Idekar, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13(11), 2498–2504, (2003).

P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage,N. Amin, B. Schwikowski, T. Idekar, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res.,13(11) (2003), 2498-2504

A. Shimbel, Structural Parameters of Communication Networks, Bull. Math. Biol., 15 (1953), 501-507

K. Xu, K. C. Das and N. Trinajstic, The Harary Index of a Graph, Springer-Verlag, Berlin, Heidelberg, 2015.

Publicado
2024-05-08
Seção
Artigos