Results for self-Inversive rational functions

  • Prof. Idrees Qasim National Institute of Technology

Resumo

In this paper, we find some relations between maximum modulus of a rational function r(z) satisfying r(z) = B(z)r(1/z) and the maximum modulus of its derivative. We also find analogue of Chon’s Theorem for rational functions.

Downloads

Não há dados estatísticos.

Biografia do Autor

Prof. Idrees Qasim, National Institute of Technology

Department of Mathematics

Referências

A. Aziz, Inequalities for the polar derivative of polynomial, J. Approx. Theory, 55 (1988), 183-193.

A. Aziz and W. M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29(2) (1998), 163-173.

S. N. Bernstein, Sur e'ordre de la meilleure approximation des functions continues par des polynomes de degre' donne', Mem. Acad. R. Belg., 4 (1912), 1-103.

A. Cohn, Uber die Anzahl der wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14(1922): 110-148

M. A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc. 1 (1969), 57-60.

Xin Li, R. N. Mohapatra and R. S. Rodgriguez, Bernstein inequalities for rational functions with prescribed poles, J. London Math. Soc., 51 (1995), 523-531.

W. M. Shah and A. Liman, On some Bernstein type inequalities for polynomials, Nonlinear Funct. Anal. Appl,, 2 (2004), 223-232.

W.M. Shah, A Generalization of a Theorem of Paul Turan, Journal of Ramanujan Society, 1(1996), 29-35.

Publicado
2024-05-08
Seção
Artigos