Some results on cyclic Meir-Keeler Kannan-Chatterjea-Reich type contraction mappings on complete metric space
Resumo
In this paper, using the notions of cyclic contractions and Meir-Keeler mappings, we define a generalised version of cyclic Meir-Keeler Kannan-Chatterjea-Reich type contraction mappings and cyclic Meir-Keeler Kannan-Chatterjea-Reich type contractive pairs. We establish some results on fixed point and best proximity point for these generalized contraction mappings in the framework of metric space. Our results generalize many existing results on fixed points and best proximity points.
Downloads
Referências
Aydi, H., Felhi, A., Best proximity points for cyclic Kannan-Chatterjea Ciric type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9(2016) 2458–2466.
Chatterjea, S. K., Fixed point theorems, C. R. Acad. Bulgare Sci. 25(6)(1972) 727–730.
Chen, C., Kuo, C., Best proximity point theorems of cyclic Meir-Keeler-Kannan-Chatterjea contractions, Results Nonlinear Anal. 2(2019), 83–91.
Debnath, P., Banach, Kannan, Chatterjea, and Reich-type contractive inequalities for multivalued mappings and their common fixed points, Math. Methods Appl. Sci. 45(3)(2022) 1587–1596. https://doi.org/10.1002/mma.7875
Debnath, P., Mitrovic, Z. D., Cho, S. Y., Common fixed points of Kannan, Chatterjea and Reich type pairs of self-maps in a complete metric space, S˜ao Paulo J. Math. Sci. 15(2021) 383-–391. https://doi.org/10.1007/s40863-020-00196-y
Eldred, A. A., Veeramani, P., Existence and convergence of best proximity points, J. Math. Anal. Appl. 323(2006) 1001–1006.
Fakhar, M., Mirdamadi, F., Soltani, Z., Some results on best proximity points of cyclic Meir–Keeler contraction mappings, Filomat 32(6)(2018) 2081–2089. https://doi.org/10.2298/FIL1806081F
Kannan, R., Some results on fixed points, Bull. Calc. Math. Soc. 60(1)(1968) 71–77.
Karapınar, E., Chi-Ming Chen, Chih-Te Lee, Best proximity point theorems for two weak cyclic contractions on metriclike spaces, Mathematics, 2019, 7, 349; doi:10.3390/math7040349
Kirk, W.A., Srinivasan, P.S., Veeramani, P., Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory Appl. 4(1)(2003) 79–89.
Meir, A., Keeler, E. B., A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969) 326–329.
Munusamy, K., Ravichandran, C., Nisar, K. S., Ghanbari, B., Existence of solutions for some functional integrodifferential equations with nonlocal conditions, Math. Meth. Appl. Sci. 43(2020) 10319–10331. https://doi.org/10.1002/mma.6698
Panda, S. K., Panthi, D., Cyclic contractions and fixed point theorems on various generating spaces, Fixed Point Theory Appl. 153 (2015). https://doi.org/10.1186/s13663-015-0403-5
Panda, S. K., Panthi, D., Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self-mappings, Fixed Point Theory Appl. 15 (2016). https://doi.org/10.1186/s13663-016-0498-3
Panda, S. K., Abdeljawad, T., Ravichandran, C., Complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Solit. Fractals 130 (2020), Article 109439 https://doi.org/10.1016/j.chaos.2019.109439
Panda, S. K., Ravichandran, C., Hazarika, B., Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Solit. Fractals 142(2021), Article 110390. https://doi.org/10.1016/j.chaos.2020.110390
Panda, S. K., Abdeljawad, T., Ravichandran, C., Novel fixed point approach to Atangana-Baleanu fractional and Lp-Fredholm integral equations, Alex. Eng. J., 59 (2020) 1959–1970. https://doi.org/10.1016/j.aej.2019.12.027
Reich, S., Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1)(1971) 121–124.
Rhoades, B. E., A comparison of various definations of contractive mappings, Trans. Amer. Math. Soc. 26(1977) 257–290.
Sen, M De la, Agarwal, R. P., Some fixed point-type results for a class of extended cyclic self-mappings with a more general contractive condition, Fixed Point Theory Appl. 2011, Article number: 59 (2011). https://doi.org/10.1186/1687- 1812-2011-59
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).