Exploration of pre-open sets in a fuzzy bitopological space via operation approach
Abstract
In this article, we propose an operation $(i,j)^*_\gamma$ on the set of all $(i,j)^*$-fuzzy pre-open set in a given fuzzy bitopological space $(X,\tau_i,\tau_j )$. Using the newly introduced operation, we initiate the $(i,j)^*_\gamma$-fuzzy preopen set and characterize it upto some extent. Also, we explore $(i,j)^*$-fuzzy pre-open set in the light of minimality. Finally, we study locally finiteness of a fuzzy bitopological space via $(i,j)^*_\gamma$-fuzzy open set.
Downloads
References
Andrijevic, D., Semi-preopen sets, Math. Vesnik., 24-32, (1986).
Andrijevic, D., On the Topology Generated by Pre-open Sets, Math. Vesnik, 39, 367-376, (1987).
Asaad, B. A., Ahmed, N., Operation on semi generalized open sets with its separation axioms, Int. J. Pure Appl. Math., 118(3), 701-711, (2018).
Carpintero, C., Rajesh, N., Roses, E., Operation approaches on b-open sets and applications, Bol. Soc. Paran. Mat., 20(1), 21-33, (2012).
Das, B.,Saha, A.K., Bhattacharya, B., On Infi-topological Spaces, The Journal of Fuzzy Mathematics, 25(2), 437-448, 2017.
Das, B., Bhattacharya, B., On fuzzy γµ-open sets in generalized fuzzy topological spaces, Proyecciones Journal of Mathematics, 41(3), 733 - 749 (2022).
Das, B., Bhattacharya, B., Chakraborty, J., Tripathy, B. C., Generalized fuzzy closed sets in a fuzzy bitopological space via γ-open sets, Afrika Matematika, 32(2), 1-13, (2021).
Das, B., Chakraborty, J., Paul, G., Bhattacharya, B., A new approach for some applications of generalized fuzzy closed sets, Computational and Applied Mathematics, 40(2), 1-14, (2021).
Das, B., Chakraborty, J., Bhattacharya, B., A new type of generalized closed set via γ-open set in a fuzzy bitopological space, Proyecciones Journal of Mathematics, 38(3), 511-536, (2019).
Das, B., Bhattacharya, B., On (i, j) generalized fuzzy γ-closed Set in fuzzy bitopological spaces, Soft Computing for Problem Solving: SocProS 2017, 1, 661-673, 2018.
Fathi, H. K., Khalaf M. A., Operations on bitopological spaces, Fasciculi Mathematici, 45, 47-57, (2010).
Ghour, S. A., Some generalizations of minimal fuzzy open sets, Acta Mathematica Universitatis Comenianae, 75(1), 107-117, (2006).
Hussain, S., On generalized open sets, Hacettepe Journal of Mathematics and Statistics, 47(6), 1438-1446, (2018).
Kandil, A, Nouh, A. A., El-Sheikh, S. A., On fuzzy bitopological spaces, Fuzzy Sets and Systems, 74, 353-363, (1995).
Kasahara, S., Operation-compact spaces, Mathematica Japonica, 24, 97-105, (1979).
Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palerno, 2, 89–96, (1970)
Mashhour, A. S., EI-Monsef, M. E., EI-Deep, S. N., On Precontinuous and Weak Continuous Mappings, Proc., Math. Phys., Soc., 53, 47-53, (1982).
Nakaoka, F., Oda, N., Some applications of minimal open sets, Int. J. Math. Math. Sci., 27(8), 471-476, (2001).
Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970, (1965).
Ogata, H., Remarks on some operation-separation axioms, Bull. Fukuoka Univ. Ed. Part III, 40, 41-43, (1991).
Ogata, H., Operations on topological spaces and associated topology, Math. Japon., 36, 175-184, (1991).
Ray, S., Das, B., Bhattacharya, B., Kisi, O., Granados, C., Application of Operation approach in fuzzy bitopological spaces, Soft Computing,(in press), 2024
Roy, B., Applications of operations on minimal generalized open sets, Afrika Matematika , 29, 1097-1104, (2018).
Roy, B., Sen, R., On maximal µ-open and minimal µ-closed sets via generalized topology, Acta Math. Hung., 136, 233-239, (2012).
Tahiliani, S., Operation approach to β-open sets and applications, Math. Comm., 16, 577-591, (2011)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



