The Asymptotic Stability of An Epidemiological Model "Covid 19 Variant English"

  • khadija channan LMACS FSTBM
  • Khalid HILAL
  • Ahmed KAJOUNI

Abstract

we have all been injured by corona and its mutations, not just us but the whole world. We have all lost people who died because of corona,
this last one has mutations one of it is the English variant, which will be our interest in this article.
Therefore, in this work we are interested in the study of the local and global asymptotic stability of a new epidemiological model
"covid 19 variant English".

Downloads

Download data is not yet available.

References

Derdei BICHARA. Study of epidemiological models: stability, observation and estimation of parameters. University of Lorraine, 2013.

Gorbalenya A.E., Baker S.C., Baric R.S. The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. [Article PMC gratuit] [PubMed] [Google Scholar]

Mathematical modeling of Covid 19 transmission dynamics with a case study of wuhan 135 (2020).

Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

KermackWO,McKendrick AG (1927) A contribution to themathematical theory of epidemics. Proc R Soc Lond A 115:700–721

KermackWO, McKendrick AG (1932) Contributions to the mathematical theory of epidemics, II—the problem of endemicity. Proc R Soc Lond A 138:55–83

KermackWO, McKendrick AG (1933) Contributions to the mathematical theory of epidemics, III—further studies of the problem of endemicity. Proc R Soc Lond A 141:94–122

Korobeinikov A (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull Math Biol 68(3):615–626

Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160(2):191–213

X. Wang, Z. Wang, H. Shen, Dynamical analysis of a discrete-time SIS epidemic model on complex networks, Appl. Math. Lett. 94 (2019) 292–299.

Allen, L.J.S. Discrete and continuous models of populations and epidemics. Journal of Mathematical Systems, Estimation, and Control, 1(3): 335-369 (1991).

Barril, C., Calsina,A. and Rippol, J. A practical approach to R0 in continuous time ecological models, Math. Meth. Appl. Sci., 41(2017)8432-8445.

Busenberg, S., Iannelli, M., Thieme, H. Global behavior of an age-structured epidemic model. SIAM J. Math. Anal., 22(4): 1065-1080 (1991).

Cha, Y., Iannelli, M., Milner, E. Existence and uniqueness of endemic states for the age-structured SIR epidemic model. Maththematical Biosciences, 150: 177-190 (1998).

Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, Chichester (2000).

Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J., On the deflnition and the computation of the basic reproduction ratio R in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.

Dietz, K., Schenzle, D.: Proportionate mixingmodels for age-dependent infection transmission. J. Math. Biol. 22, 117-120 (1985).

Dunford, N. and Schwartz, J. T. Linear Operators Part I: General Theory, New York: Interscience publishers, 1958.

El-Doma, M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption. Math. Comput. Model., 29: 31-43 (1999).

Greenhalgh, D. Analytical threshold and stability results on age-structured epidemic models with vaccination. Theoretical Population Biology, 33: 266-290 (1988).

Greenhalgh, D., Dietz, K.: Some bounds on estimates for reproductive ratios derived from the age-specific force of infection. Math. Biosci. 124, 9-57 (1994).

Gurtin, M.E. and MacCamy, R. C., Product Solutions and Asymptotic Behavior for Age-Dependent, Dispersing Populations, (1981).

Iannelli, M., Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa, (1995).

Inaba, H. on a new perspective of the basic reproduction number in heterogeneous environments. J.Math.Biol., 65(2012) 309-348.

Inaba, H. Threshold and stability results for an age-structured epidemic model. J. Math. Biol., 28: 149-175(1990).

Channan, K., Hilal, K.,Kajouni, A. (2023). The asymptotic stability of a fractional epidemiological model. International Journal of Nonlinear Analysis and Applications, 14(7), 35-43.

Inaba, H. Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, (2017).

Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics I. Proc. R. Soc. 115, 700-721 (1927).

Kilbas, A.A., Marichev, O.I. and Samko, S.G. Fractional integrals and derivatives : Theory and applications, (1993).

Kilbas, A. A., Srivastava, H. H., Trujillo, J. J. Theory and Applications of Fractional Differential Equations, (2006).

Krasnoselskii, M.A. Positive Solutions of Operator Equations. Groningen, Noordhoff, (1964).

Langlais, M. Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, (1988).

Lotka,A.J. Elements of Physical Biology. Baltimore: Williams and Wilkins. (Republished as Elements of Mathematical Biology. New York: Dover 1956).

Marek, I. Frobenius theory of positive operators: comparison theorems and applications. SIAM J. Appl. Math., 19(3): 607-628 (1970).

May, R.M., Anderson, R.M. Endemic infections in growing populations. Math. Biosci., 77: 141-156 (1985).

Mckendrick, A. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc., 44: 98-130 (1926).

Sawashima, I. On spectral properties of some positive operators. Nat. Sci. Dep. Ochanomizu Univ., 15 : 53-64 (1964).

Shenghai, Z.: On age-structured SIS epidemic model for time dependent population. Acta Math. Appl. Sin. 15, 45-53 (1999).

Smith, H. L. and Thieme, H. R. Dynamical Systems and Population Persistence, Graduate Studies in Mathematics 118, Amer. Math. Soc. Providence, Rhode Island, (2011).

Tudor, D.W. An age-dependent epidemic model with applications to measles. Math. Biosci., 73: 131-147 (1985).

Khadija, C., Khalid, H., Ahmed, K. (2023). The global stability of fractional epidemiological model with n strain” all coronavirus mutations”. Commun. Math. Biol. Neurosci., 2023, Article-ID.

Channan, K., Hilal, K., Kajouni, A. (2021, June). An Epidemiological Model “Covid 19 British Variant”. In International Conference on Partial Differential Equations and Applications, Modeling and Simulation (pp. 255-258). Cham: Springer International Publishing.

Webb, G.B. Theory of Nonlinear Age-dependent Population Dynamics. New York and Basel: Marcel Dekker, (1985).

Published
2025-03-24
Section
Articles