Boros Integral Involving the Product of Special Functions and the Incomplete I- Function
Abstract
In this present research, we developed a three parameter Boros integral formula for the incomplete I-function along with the generalized multi-index Mittag-
Leffler function (MLF) and Srivastava Polynomial. The derived outcomes are of a generic nature and may yield Boros integrals engaging the incomplete H(bar) - function and incomplete H- function as a specific instance.
Downloads
Download data is not yet available.
References
[1] Bhatter, S., Jangid, K., Meena, S., & Purohit, S.D. (2021). Certain Integral Formulae Involving
Incomplete I-Functions. Science & Technology Asia, 26(4). 84-95.
[2] Boros, G., & Moll, V.H. (1998). An integral with three parameters. Siam Review, 40(4), 972-980.
[3] Erd´elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G. (1954). Higher Transcendental Functions
3, McGraw–Hill, New York, Toronto & London . Reprinted: Krieger, Melbourne, Florida, 1981.
[4] Jangid, K., Bhatter, S., Meena, S. & Purohit, S.D. (2023). Certain classes of the incomplete Ifunctions
and their properties, Discontin. Nonlinearity Complex., 12(2), to appear.
[5] Kilbas, A.A., Marichev, O.I., & Samko, S.G. (1993). Fractional integrals and derivatives (theory
and applications).
[6] Kiryakova, V. S. (2000). Multiple (multiindex) Mittag–Leffler functions and relations to generalized
fractional calculus. J. Comp. Appl. Math., 118(1-2), 241-259.
[7] Kumar, D., Ayant, F., Nirwan, P., & Suthar, D. L. (2022). Boros integral involving the generalized
multi-index Mittag-Leffler function and incomplete I-functions. Research in Mathematics, 9(1), 1-7.
[8] Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag–Leffler function in
the kernel, Yokohama Math. J. 19 , 7–15.
[9] Qureshi, M. I., Quraishi, K. A., & Pal, R. (2011). Some definite integrals of Gradshteyn-Ryzhil and
other integrals. Glob. J. Sci. Front. Res., 11(4), 75-80.
[10] Rathie, A.K. (1997). A new generalization of generalized hypergeometric functions, LeMatematiche,
52(2), 297-310.
[11] Srivastava, H.M. & Singh, N.P. (1983). The integration of certain products of the multivariable
H-function with a general class of polynomials, Rend. Circ. Mat. Palermo, 32(2), 157-187.
[12] Saxena, R. K.,& Nishimoto, K. (2010).: N-fractional calculus of generalized Mittag-Leffler functions.
J. Fract. Calc, 37, 43-52.
[13] Saxena, R. K., & Nishimoto, K. (2010). : Further results on generalized Mittag-Leffler functions of
fractional calculus. J. Fract. Calc, 39, 29-41.
[14] Srivastava, H. M., & Tomovski, ˇZ. (2009). Fractional calculus with an integral operator containing
a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput., 211(1), 198-210.
[15] Wiman, A. (1905). ¨Uber den fundamental Satz in der Theorie der Funktionen Eα(x), Acta Math.,
pp. 191–201.
Incomplete I-Functions. Science & Technology Asia, 26(4). 84-95.
[2] Boros, G., & Moll, V.H. (1998). An integral with three parameters. Siam Review, 40(4), 972-980.
[3] Erd´elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G. (1954). Higher Transcendental Functions
3, McGraw–Hill, New York, Toronto & London . Reprinted: Krieger, Melbourne, Florida, 1981.
[4] Jangid, K., Bhatter, S., Meena, S. & Purohit, S.D. (2023). Certain classes of the incomplete Ifunctions
and their properties, Discontin. Nonlinearity Complex., 12(2), to appear.
[5] Kilbas, A.A., Marichev, O.I., & Samko, S.G. (1993). Fractional integrals and derivatives (theory
and applications).
[6] Kiryakova, V. S. (2000). Multiple (multiindex) Mittag–Leffler functions and relations to generalized
fractional calculus. J. Comp. Appl. Math., 118(1-2), 241-259.
[7] Kumar, D., Ayant, F., Nirwan, P., & Suthar, D. L. (2022). Boros integral involving the generalized
multi-index Mittag-Leffler function and incomplete I-functions. Research in Mathematics, 9(1), 1-7.
[8] Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag–Leffler function in
the kernel, Yokohama Math. J. 19 , 7–15.
[9] Qureshi, M. I., Quraishi, K. A., & Pal, R. (2011). Some definite integrals of Gradshteyn-Ryzhil and
other integrals. Glob. J. Sci. Front. Res., 11(4), 75-80.
[10] Rathie, A.K. (1997). A new generalization of generalized hypergeometric functions, LeMatematiche,
52(2), 297-310.
[11] Srivastava, H.M. & Singh, N.P. (1983). The integration of certain products of the multivariable
H-function with a general class of polynomials, Rend. Circ. Mat. Palermo, 32(2), 157-187.
[12] Saxena, R. K.,& Nishimoto, K. (2010).: N-fractional calculus of generalized Mittag-Leffler functions.
J. Fract. Calc, 37, 43-52.
[13] Saxena, R. K., & Nishimoto, K. (2010). : Further results on generalized Mittag-Leffler functions of
fractional calculus. J. Fract. Calc, 39, 29-41.
[14] Srivastava, H. M., & Tomovski, ˇZ. (2009). Fractional calculus with an integral operator containing
a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput., 211(1), 198-210.
[15] Wiman, A. (1905). ¨Uber den fundamental Satz in der Theorie der Funktionen Eα(x), Acta Math.,
pp. 191–201.
Published
2025-02-08
Issue
Section
Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).