Infinitely many solutions for a class of fractional equations via variant fountain theorems
Resumo
This article is concerned with a class of fractional type equation involving an anisotropic operator and potential of the form $$(-\Delta_x)^s u-\Delta_yu+\Phi(x,y)u=g(x,y,u),\;(x,y)\in\mathbb{R}^n\times\mathbb{R}^m.$$ By means of the variational method and the variant fountain theorems, we investigate the existence of infinitely many high or small energy solutions without the usual assumption of coerciveness on the potential $\Phi$ in the different cases when the nonlinear term is either asymptotically linear or superquadratic growth.Downloads
Referências
D. Applebaum, Levy processes from probability to finance and quantum groups, Not. Am. Math. Soc. 51, 1336-1347, (2004).
T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math, 96, 118, (2005).
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (3), 259-281 (2005).
T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrodinger equations, Comm. Partial Differential Equations, 29(12), 25-42 (2004).
G. Barles, E. Chasseigne, A. Ciomaga and C. Imbert, Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calc. Var. Partial Differ. Equ. 50, 283–304 (2014).
G. Barles, E. Chasseigne, A. Ciomaga and C. Imbert, Lipschitz regularity of solutions for mixed integrodifferential equations, J. Differ. Equ. 252(11), 6012–6060, (2012).
G. Barles, E. Chasseigne and C. Imbert, Holder continuity of solutions of second-order nonlinear elliptic integrodifferential equations, J. Eur. Math. Soc., 13, 1-26 (2011).
L. Caffarelli, Nonlocal diffusions, drifts and games, in: Nonlinear Partial Differential Equations, Abel Symposia, 7, 37-52, (2012).
L. Caffarelli, Some nonlinear problems involving non-local diffusions in: ICIAM 07-6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zurich, 43-56 (2009).
A, Ciomaga, On the strong maximum principle for second order nonlinear parabolic integro-differential equations Adv. Differ. Equ. 17(7/8), 635–671, (2012).
A. Esfahani, Anisotropic Gagliardo-Nirenberg inequality with fractional derivatives, Z. Angew. Math. Phys., 66, 3345-3356, (2015).
A. Esfahani and S. E. Esfahani, Positive and nodal solutions of the generalized BO-ZK equation, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 112, 1381–1390, (2018).
A. Esfahani, Existence of solutions of class of nonlinear nonlocal problems involving the potential, Chaos, Solitons and Fractals., 119, 1-7, (2019).
A. Farina and E. Valdinoci, Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscr. Math., 153, 53-70 (2017).
M. C. Jorge, G. Cruz-Pacheco, L. Mier-y-Teran-Romero and N.F. Smyth, Evolution of two-dimensional lump nanosolitons for the Zakharov–Kuznetsov and electromigration equations, Chaos, 15(3), 37104, (2005).
J. C. Latorre, A. A. Minzoni, N. F. Smyth and C. A., Vargas, Evolution of Benjamin–Ono solitons in the presence of weak Zakharov–Kuznetsov lateral dispersion, Chaos. 16(4), 043103, (2006).
N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett., 268, 298-305 (2000).
M. Massar, Infinitely many radial solutions for a nonlocal equation involving an anisotropic operator, J. Nonlinear Funct. Anal., 2020 (2020).
M. Rahmani, M. Rahmani, A. Anane, M. Massar, Least energy sign-changing solutions for a nonlocal anisotropic Kirchhoff type equation, Moroccan J. of Pure and Appl. Anal, 8, 212–227, (2022).
F. Ribaud and S. Vento, Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 37, 449-483, (2017).
K. M. Teng, Multiple solutions for a class of fractional Schrodinger equations in RN, Nonlinear Anal: RWA., 21, 76–86, (2015).
W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104, 343–358, (2001).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).