On the weak solutions of the 3D MHD equations and 3D magneto-micropolar equations

  • Muhammad Naqeeb Quaid e azam university islamaad
  • Amjad Hussain
  • Ahmad Mohammed Alghamdi

Abstract

In our current line of investigation, we examine the finite-time regularity of generalised solutions to the 3D MHD equations in anisotropic Lebesgue space as well as the 3D magneto-micropolar equations in anisotropic Lorentz space. Using the pressure term and its gradient as a foundation, the new regularity results are presented. We concluded by demonstrating the requirements in terms of magnetic field and velocity components.

Downloads

Download data is not yet available.

References

L. Berselli and G. Galdi. Regularity criteria involvingthe pressure for the weak solutions to the Navier–Stokes equations. Proceedings of the American Mathematical Society, 130(12):3585-95, 2002.

Y. Zhou. Regularity criteria for the 3D MHD equations in terms of the pressure. International Journal of Non-Linear Mechanics, 41(10):1174-1180, 2006.

H. Duan. On regularity criteria in terms of pressure for the 3D viscous MHD equations. Applicable Analysis, 91(5):947-52, 2012.

Z. Yong and F. Jishan. Logarithmically improved regularity criteria for the 3D viscous MHD equations. Forum Mathematicum, 24(4):691 – 708, 2012.

D. Tong and W. Wang. Conditional regularity for the 3D MHD equations in the critical Besov space. Applied Mathematics Letters, 102:106119, 2020.

E.E. Ortega-Torres and M.A. Rojas-Medar. Magneto-micropolar fluid motion: global existence of strong solutions. Abstract and Applied Analysis, 4(2):109–125, (1999).

G. Sadek, M.A. Ragusa and Z. Zhang, A regularity criterion in terms of pressure for the 3D viscous MHD equations. Bulletin of the Malaysian Mathematical Sciences Society, 40(4):1677-1690, 2017.

S. Gala and M.A. Ragusa. A note on regularity criteria in terms of pressure for the 3D viscous MHD equations. Mathematical Notes, 102(3):475-479, 2017.

M. Naqeeb, A. Hussain and A.M. Alghamdi. Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 8(2): 4700-4713, 2023.

M. Naqeeb, A. Hussain and A. M. Alghamdi. An improved regularity criterion for the 3D Magnetic Benard system in Besov spaces. Symmetry, 14(9):1918, 2022.

S. Gala, E. Galakhov, M.A. Ragusa and O. Salieva. Beale-Kato-Majda regularity criterion of smooth solutions for the Hall-MHD equations with zero viscosity. Bulletin Brazilian of the Mathematical Society, 53 (1):229-241, 2021.

L.H. He, and Z. Tan. Inverse boundary value problem for the magnetohydrodynamics equations. Journal of Function Spaces, 2021:1-10, 2021.

V. Mutarutinya, M. Mpimbo and G. Nshizirungu. On the relationship and the norm discretization for Lizorkin-Triebel spaces with generalized smoothness. Filomat, 36 (2): 615-627, 2022.

M.A. Rojas-Medar and J.L. Boldrini. Magneto-micropolar fluid motion: existence of weak solutions. Revista Matematica Complutense, 11(2):443-460, 1998.

M.A. Rojas-Medar. Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Mathematische Nachrichten, 188(1): 301–319, 1997.

B. Yuan. Regularity of weak solutions to magneto-micropolar fluid equations.Acta Mathematica Scientia, 30(5): 1469–1480, 2010.

L. Ni, Z. Guo and Y. Zhou. Some new regularity criteria for the 3D MHD equations. Journal of Mathematical Analysis and Applications, 396(1):108–118, 2012.

X. Jia. A new scaling invariant regularity criterion for the 3D MHD equations in terms of horizontal gradient of horizontal components. Applied Mathematics Letters, 50:1–4, 2015.

F. Xu, X. Li, Y. Cui and Y. Wu. A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. Zeitschrift fur angewandte Mathematik und Physik, 68(6):1-8, 2017.

G. Duraut and J. L. Lions. Inequations en thermoelasticite et magneto-hydrodynamique. Archive for Rational Mechanics and Analysis, 46(4):241–279, 1972.

L. Longshen and M. Bai. Remarks on pressure regularity criterion for the 3D Boussinesq equations. Computers & Mathematics with Applications, 76(7): 1661-1668, 2018.

K.A. Bekmaganbetov and Y. Toleugazy. On the Order of the Trigonometric Diameter of the Anisotropic Nikol’skii–Besov Class in the Metric of Anisotropic Lorentz Spaces. Analysis Mathematica, 45:237–247, 2019.

R. O’Neil. Convolution operators and L(p, q) spaces. Duke Mathematical Journal, 30(1):129-142, 1963.

T. Chen and W. Sun. Iterated weak and weak mixed-norm spaces with applications to geometric inequalities. The Journal of Geometric Analysis, 30(4):4268-4323, 2020.

M.A. Ragusa and F. Wu. Regularity criteria for the 3d magneto-hydrodynamics equations in anisotropic lorentz spaces. Symmetry, 13(4):625, 2021.

Published
2025-07-13
Section
Research Articles