Exact calculus for s-Holder subgradients in Banach spaces

  • Abdelaziz Haddane
  • Jamal Hlal University Mohammed I
  • Abdelhaq Benbrik University Mohammed I

Résumé

We give in this paper some useful calculus results related to the s-H$\ddot{o}$lder subdifferential of extended-real valued functions defined on arbitrary real Banach spaces.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Abdelaziz Haddane

Department of Mathematics

Jamal Hlal, University Mohammed I

Department of Mathematics

Abdelhaq Benbrik, University Mohammed I

Department of Mathematics

Références

Bernicot. F and Venel. J: Differential inclusions with proximal normal cones in Banach spaces, Journal of Convex Analysis, vol 17, no. 2, pp, 451-484, (2010).

Borwein, J. M and Press. D:A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. trans. Amer. Math. Soc. 303, 517-527. (1987).

Borwein, J. M, Girgensohn. R and Wang. X : On the Construction of Hölder and Proximal Subderivatives.www.cecm. cfu. ca.(1997).

Borwein, J. M, and Warren B. M and Wang. X: Lipschitz functions with prescribed derivatives and subderivatives, Nonlinear Analysis, Theory, Methods and Applications, vol. 29, no. 1, pg. 53-63, (1997).

Ioffe. A. D: Proximal analysis and approximate subdifferentials, J. London. Math. Soc. 41, 175-192, (1990).

Mordukhovich B. S: Maximum principle in the problem of time optimal response with nonsmooth contraints, Journal of Applied Mathematics and Méchanics, 40, 960-969, (1976).

Mordukhovich B. S and Y. Shao: On Nonconvex Subdifferential Calculus in Banach Spaces. Journal of Convex Analysis. Volume 2, 211-227, (1995).

Mordukovitch B. S and Nguyen M. N: Exact calculus for proximal subgradients with applications to optimization. ESAIM: PROCEEDINGS, Vol.17, 80-85. (2007).

Mordukovitch, B. S: Variational Analysis and Applications, Springer Monographs in Mathematics. Book, ISBN 978-3-319-92773-2. (2018).

Pawel. G and Sterm. R. J: Subdifferential analysis of the Van der Waerden function. Journal of Convex Analysis, vol 18, no. 3, pp, 451-484, (2011).

Zheng. X. Y and Kung. F. N : Hölder stable minimizers, tilt stability, and Hölder metric regularity of subdifferentials. SIAM J. OPTIM. Vol. 25, No. 1, pp. 416–438, (2015).

Publiée
2024-05-24
Rubrique
Articles