Some common fixed point theorems in F-bipolar metric spaces and applications

  • Joginder Paul H.N.B. Garhwal University, Department of Mathematics, B.G.R. Campus, Pauri - 246001.
  • N. Chandra H. N. B. Garhwal University, B. G. R. Campus, Pauri
  • U. C. Gairola H. N. B. Garhwal University, B. G. R. Campus, Pauri

Abstract

In this paper, we prove some common fixed point theorems for generalized rational type contraction in F -bipolar metric spaces. These theorems also generalize and extend several interesting results of metric fixed point theory to the F -bipolar metric context. In addition, there are some examples
and applications for the obtained results.

Downloads

Download data is not yet available.

Author Biographies

N. Chandra, H. N. B. Garhwal University, B. G. R. Campus, Pauri

Department of Mathematics, Assistant Professor

U. C. Gairola, H. N. B. Garhwal University, B. G. R. Campus, Pauri

Department of Mathematics, Professor

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3(1922),
133-181.
[2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1)(1993), 5-11.
[3] M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22(1)(1906), 1-72.
[4] D. S. Jaggi, Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics, 8(2)(1977), 223-230.
[5] M. Jleli, B. Samet, On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., 20(2018), 20 pages.
[6] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60(1968), 71-76.
[7] M. S. Khan, A fixed point theorem for metric spaces. Rend. Istit. Mat. Univ. Trieste., 8(1976), 69-72.
[8] G. N. V. Kishore, D. R. Prasad, B. S. Rao, and V. S. Baghavan, Some applications via common coupled fixed point theorems in
bipolar metric spaces, Journal of Critical Reviews, 7(2)(2019), 601-607.
[9] G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in
bipolar metric spaces with applications, Fixed Point Theory Appl., 2018(2018), 1-13.
[10] G. N. V. Kishore, K. P. R. Rao, A. Sombabu, and R. V. N. S. Rao,Related results to hybrid pair of mappings and applications in
bipolar metric spaces, Journal of Mathematics, 2019(2019), 1-7.
[11] G. N. V. Kishore, H. Isik, H. Aydi, B. S. Rao, and D. R. Prasad, On new types of contraction mappings in bipolar metric spaces
and applications, Journal of Linear and Topological Algebra, 9(4)(2020), 253-266.
[12] S. G. Matthews, Partial metric topology, The New York Academy of Sciences. Ann. N. Y. Acad. Sci., 1994 (1994), 183-197.
[13] A. Mutlu, U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9(9)(2016), 5362-5373.
[14] A. Mutlu, K. Ozkan, U. Gurdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl.Eng. Math.,
10(2)(2020), 379-388.
[15] A. Mutlu, K. Ozkan, and U. Gurdal, Coupled fixed point theorems on bipolar metric spaces, European Journal of Pure and
Applied Mathematics, 10(4)(2017), 655-667.
[16] J. Paul and U. C. Gairola, Fixed point for generalized rational type contraction in partially ordered metric spaces, Jnanabha,
52(1)(2022), 162-166.
[17] J. Paul and U. C. Gairola, Existence of fixed point for rational type contraction in F-metric space, Ganita, 72(1)(2022), 369-374
[18] B. S. Rao, G. N. V. Kishore, and G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar
metric spaces with applications to homotopy, International Journal of Mathematics Trends and Technology (IJMTT), 63(2018),
25-34.
[19] S. Rawat, R. C. Dimri and A. Bartwal, F-Bipolar metric spaces and fixed point theorems with applications, J. Math. Com SCI-JM. 26(2)(2022), 184-195.
[20] S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J., 2014(2014), 1-7.
Published
2025-12-05
Section
Research Articles