New separation axiom in multiset topology
Abstract
In this article we introduce some M-topological operators called multiset kernel and multiset shell operators. Then we define a new separation axiom termed as multiset $T_{D}$- spaces and investigate some of its basic properties. It is observed that this space precisely lies between multiset $T_0$ and multiset $T_1$-spaces. Also, we characterize multiset $T_0$, $T_1$ and $T_D$-spaces in the light of the mentioned operators.Downloads
References
W. D. Blizard, Multiset theory, Notre Dame J. Formal Logic, 30 (1989) 36–66
W. D. Blizard, The development of multiset theory, Modern Logic, 1(4)(1991) 319-352
M. M El-Sharkasy and M. S Badr, Modeling DNA and RNA mutation using mset and topology. International Journal of Biomathematics 11(04)(2018) 1850058
M. M. El-Sharkasy, W. M. Fouda and M. S. Badr, Multiset topology via DNA and RNA mutation. Mathematical Methods in the Applied Sciences, 41(15)(2018) 5820-5832
A. Ghareeb, Redundancy of multiset topological spaces, Iran. J. Fuz. Sys., 14(2017) 163–168
K. P. Girish and S. J. John, Relations and functions in multiset context, Information Sciences 179(2009) 758–768
K. P. Girish and S. J. John, Multiset topologies induced by multiset relations, Information Sciences 188(2012) 298–313
K. P. Girish and S. J. John, On multiset topologies, Theory Appl. Math. Comput. Sci. 2(2012) 37-52
J. L. Hickman, A note on the concept of multiset, Bull. Austral. Math. Soc., 22 (1980) 211–217
A. Jakaria, Note on multiset topologies, Annals Fuzzy Math Inform, 10(5)(2015) 825-827
S. P. Jena, S. K. Ghosh and B. K. Tripathy, On the theory of bags and lists, Information Sciences 132(2001) 241–254
P. R. Kumar and S. J. John, On redundancy, separation, and connectedness in multiset topological spaces, AIMS Math 5(3)(2020) 2484-2499
P. R. Kumar, S. J. John and S. Samanta, Compactness and subspace M-topologies, Soft Computing, 26(2022) 4115-4122
S. Mahanta and S. K. Samanta, Compactness in multiset topology, Int. J. Math. Trends Tech. (IJMTT), 47 (2017) 275–282
P. M. Mahalakshmi and P. Thangavelu, M-Connectedness in M-Topology, Internat. Jour. Pure Appl. Math., 106 (8)(2016) 21-25
P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9(3)(2001) 589-602
D. Molodstov, Soft set theory-first results, Comp. Math. Appli., 37(1999) 19–31
Z. Pawlak, Rough sets, Int. J. Comp. Inf. Sci., 11(1982) 341–356
G. C. Ray and S. Dey, Mixed multiset topological space and separation axioms, Indian J Pure Appl Math, 53(1)(2022) 92-99
S. E. Sheikh, O. Rajab and M. Raafat, Separation axioms on multiset topological space. Journal of New Theory (7)(2015) 11-21
K. Shravan and B. C. Tripathy, Generalised closed sets in multiset topological space, Proyecciones J. Math. 37(2)(2018) 223-237
K. Shravan and B. C. Tripathy, Multiset ideal topological spaces and local function, Proyecciones J. Math. 37(4)(2018) 699-711
K. Shravan and B. C. Tripathy, Multiset mixed topological space, Soft Computing, 23(2019) 9801-9805
F. Smarandache, A unifying field in logics, neutrosophy: neutrosophic probability, set and logic. Rehoboth: American Research Press (1998)
R. R. Yager, On the theory of bags, Int. J. Gen. Syst. 13(1) (1986) 23–37
L. A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965) 338-353
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).