A pair of non-self mappings and their fixed point satisfying integral type contraction condition in convex spaces

  • Ladlay Khan Mewat Engineering College, Maharshi Dayanand University

Abstract

A common xed point theorem is proved for a pair of non-self mappings
by using contraction condition of integral type on non-empty closed subset K of
a metrically convex metric space X: Result generalizing and unifying the previous
results due to Branciari [2], Ciric [4], Rhoades [19], Khan [12, 13] and others.

Downloads

Download data is not yet available.

References

N. A. Assad and W. A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pacific J. Math. 43(3)(1972), 553-562.

A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 9(29)(2002), 531 - 536.

Lj. B. Ciric and J. S. Ume, Some common fixed point theorems for weakly compatible mappings, J. Math. Annal. Appl. 314(2002), 488 - 499.

Lj. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45(1974), 267-273.

O. Hadzic, On coincidence points in convex metric spaces, Univ. U. Novom. Sadu. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 19(2)(1986), 233-240.

O. Hadzic and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. U. Novom. Sadu. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 16(1)(1986), 13-240.

M. Imdad and L. Khan, Fixed point theorems for a family of hybrid pairs of mappings in metrically convex spaces, Fixed Point Theory Appl. 3(2005), 1281-294.

M. Imdad and L. Khan, Rhoades type fixed point theorems for two hybrid pairs of mappings in metrically convex spaces, Nonlinear Analysis Hybrid Systems, 4(2010) 79-84.

M. Imdad, L. Khan and D. R. Sahu, Common fixed point theorems for two pairs of non-self mappings, J. Appl. Math. Computing, 21(1-2)(2006), 269 - 287.

G. Jungck, Common fixed point for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4(2) (1996), 199-215.

L. Khan, Fixed point theorem for weakly contractive maps in metrically convex spaces under C class function, Nonlinear Functional Analysis and Applications, 25(1)(2020), 153 - 160.

L. Khan, Fixed point theorem for non-self mappings satisfying contraction condition of integral type in metrically convex spaces, Proceedings of Institute Applied Mathematics, 10(1)(2021), 16 - 24. 8 Ladlay Khan

L. Khan, Fixed point theorem for non-self mappings satisfying generalized contraction condition of integral type in metrically convex spaces, Italian Journal of Pure and Applied Mathematics, 48(2022), 733 - 740.

L. Khan and M. Imdad, Rhoades type fixed point theorems for two hybrid pairs of mappings in metrically convex spaces, Applied Mathematics and Computation, 218(2012), 8861 - 8868.

L. Khan and M. Imdad, Meir and Keeler type fixed point theorem for set-valued generalized contractions in metrically convex spaces, Thai Journal of Mathematics, 10(3)(2012), 473 - 480.

L. Khan and M. Imdad, Fixed point theorems for two hybrid pairs of multi-valued non-self mappings in metrically convex spaces, Nonlinear Analysis Forum, 21(2)(2016), 43 - 54.

S. B. Nadler, Multi-valued contraction mappings, Pacefic J. Math. 30(2)(1969), 475 - 488.

B. E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23(4)(1978), 457-459.

B. E. Rhoades, Two fixed point theorems for mappings satisfying a contractive condition of integral type, Int. J. Math. Math. Sci. 63(2003), 4007 - 4013.

S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. 32(4-6)(1982), 149 - 153.

Published
2025-03-12
Section
Articles