On the nonlinear fuzzy hybrid $ \psi $-Hilfer fractional differential equations
Abstract
This manuscript aims to highlight the existence result for a class of nonlinear fuzzy hybrid $ \psi $-Hilfer fractional differential equations. Our approach is based on the application of an extended $ \psi $-Hilfer fractional derivative of order q, σ ∈ (0, 1) valid on fuzzy functions paired with Dhage fixed point theorem. As an example of application, we provide one at the end of this paper to show how the results can be used.
Downloads
References
A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.
B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett. 18 (2005) 273-280.
B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid 4 (2010) 414-424.
B. C. Dhage, V. Lakshmikantham, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Diff. Eq. et App. 2 (2010) 465-486.
K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ. (2015) 2015:183.
Samira Zerbib, Khalid Hilal, and Ahmed Kajouni. ”Some new existence results on the hybrid fractional differential equation with variable order derivative.” Results in Nonlinear Analysis 6.1 (2023): 34-48.
Khalid Hilal, Ahmed Kajouni, and Samira Zerbib. ”Hybrid fractional differential equation with nonlocal and impulsive conditions.” Filomat 37.10 (2023): 3291-3303.
D. Qiu, W. Hhang, C. Lu, On fuzzy differential equations in the quotient space of fuzzy numbers, Fuzzy set. Syst., 295 (2016), 72–98.
M. Ma, M. Friedman, A. Kandel, A new fuzzy arithmetic, Fuzzy Set. Syst., 108 (1999), 83–90.
Barnabs Bede, Mathematics of Fuzzy Sets and Fuzzy Logic,Studies in Fuzziness and Soft Computing, Springer 2013.
El Mfadel, A., Melliani, S., and Elomari, M. H. (2021). Notes on Local and Nonlocal Intuitionistic Fuzzy Fractional Boundary Value Problems with Caputo Fractional Derivatives. Journal of Mathematics, 2021, 1-11
J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the ψ−Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simulat., vol. 60, pp. 72–91, 2018.
B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett., 18 (3) (2005), 273–280.
Harir, Atimad, Said Melliani, and L. Saadia Chadli. ”Hybrid fuzzy differential equations.” AIMS Mathematics 5.1 (2019): 273-285.
Kucche, Kishor D., and Ashwini D. Mali. ”On the nonlinear Ψ-Hilfer hybrid fractional differential equations.” Computational and Applied Mathematics 41.3 (2022): 1-23.
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, (2017), 460-481.
S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319–330.
L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Syst., 161 (2010), 1564–1584.
O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317.
El Mfadel, A., Melliani, S. and Elomari, M. (2024). On the initial value problem for fuzzy nonlinear fractional differential equations. Kragujevac J Math, 48(4), 547-554
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).