Frequently supercyclic operators and frequently supercyclic C0-semigroups
Abstract
In this paper, the concept of frequent supercyclicity for operators and for C0-semigroups is defined. It is proved that if an operator T is frequently supercyclic, then T^n and {\lambda}T are frequently supercyclic for any natural number n and any non-zero scalar {\lambda}. Also, it is established that frequent supercyclicity of
a C0-semigroup implies frequent supercyclicity of any of their operators. Moreover, by using discretization and autonomous discretization of a C0-semigroup, some equivalent conditions for frequent supercyclicity are stated.
Downloads
References
2. Bayart, F., Matheron, E., Dynamics of Linear Operators, Cambridge, Cambridge University Press, 2009.
3. Bayart, F., Grivaux, S., Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358, 5083-5117, (2006).
4. Bermudez, T., Bonilla, A., Conejero, J. A., Peris, A., Hypercyclic, Topologically Mixing and chaotic semigroups on Banach spaces, Studia Math. 131, 57-75, (2005).
5. Bermudez, T., Bonilla, A., Martinon, A., On the Existence of Chaotic and Hypercyclic Semigroups on Banach Spaces, Proc. Amer. Math. Soc. 170, 2435-2441, (2003).
6. Bernal-Gonzalez, L., Grosse-Erdmann, K. G., Existence and Nonexistence of Hypercyclic Semigroups, Proc. Amer. Math. Soc. 135, 755-766, (2007).
7. Bonilla, A., Grosse-Erdmann, K. G., Frequently hypercyclic operators and vectors, Ergod. Theory Dyn. Syst. 27, 383-404, (2007).
8. Chaouch, B., Kosti, M., Pilipovi, S., Velinov, D., f-Frequently hypercyclic C0-semigroups on complex sectors, Banach J. Math. Anal. 14, 1080-1110, (2020).
9. Conejero, J. A., Muller, V., Peris, A., Hypercyclic behaviour of operators in a hypercyclic C0-semigroup, J. Funct. Anal. 244, 342-348, (2007).
10. Desh, W., Schappacher, W., Webb, G. F., Hypercyclic and chaotic semigroups of linear operators, Ergod. Theory Dyn. Syst. 17, 793{819, (1997).
11. Grosse-Erdmann, K. G., Peris Manguillot, A., Linear Chaos. London: Springer-Verlag, 2011.
12. Grosse-Erdmann, K. G., Peris, A., Frequently dense orbits, C. R. Acad. Sci. Paris 341, 123-128, (2005).
13. Grosse-Erdmann, K. G., Recent developments in hypercyclicity, RACSAM. Rev. R. Acad. Cien. Serie. A Mat. 97, 273-286, (2003).
14. Guo, Z., Liu, L., Shu, Y., Frequent hypercyclicity and chaoticity of Toeplitz operators and their tensor products, Proc. Indian Acad. Sci. 131, 49, (2021).
15. Kumar, A., Srivastava, S., Supercyclicity criteria for C0-semigroups, Adv. Oper. Theory 5, 1646-1666, (2020).
16. Kumar, A., Srivastava, S., Supercyclic C0-semigroups, stability and somewhere dense orbits, J. Math. Anal. Appl. 476, 539-548, (2019).
17. Mangino, E., Peris, A., Frequently hypercyclic semigroups, Studia Math. 202, 227-242, (2011).
18. Mangino, E. M., Murillo-Arcila, M., Frequently hypercyclic translation semigroups, Studia Math. 227, 219-238 (2015).
19. Moosapoor, M., Supermixing and hypermixing of strongly continuous semigroups and their direct sum, J. Taibah Univ. Sci. 15, 953-959, (2021).
20. Moosapoor, M., Shahriari, M., About subspace-frequently hypercyclic operators, Sahand Commun. Math. Anal. 17, 107-116 (2020).
21. Shkarin, S., On supercyclicity of operators from a supercyclic semigroup, J. Math. Anal. Appl. 382, 516-522, (2011).
22. Shkarin, S., On the spectrum of frequently hypercyclic operators, Proc. Amer. Math. Soc. 137, 123-134, (2009).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).