Fixed points for reciprocally continuous mappings and variants of compatible mappings
Abstract
In this paper, we introduce $(\psi,\phi)$-weak contraction condition involving cubic terms of distance function and prove some fixed point theorems for pairs of compatible mappings of type $(E)$, type $(K)$ and subcompatible mappings satisfying a newly introduced contraction condition. We also provide examples in support of our results and give an application for the mappings satisfying an integral contractive type $(\psi,\phi)$-weak contraction condition.
Downloads
References
[2] S. Banach, {\it Surles operations dans les ensembles abstraites et leaurs applications}, Fund. Math., {\bf 3} (1922), 133--181.
[3] S. Benchabane and S. Djebali, {\it Common fixed point for multivalued $(\psi$-$G)$-contraction mappings in partial metric spaces}, Bol. Soc. Parana. Mat. {\bf 40} (2022), Paper No. 59.
[4] H. Bouhadjera and C. Godet-Thobie, {\it Common fixed point theorems for pairs of subcompatible maps}, arxiv:0906.3159v1/[math.FA] (2009).
[5] H. Bouhadjera and C. Godet-Thobie, {\it Common fixed point theorems for pairs of subcompatible maps}, arxiv:0906.3159v2/[math.FA] (2011).
[6] D. W. Boyd and J. S. W. Wong, {\it On nonlinear contractions}, Proc. Am. Math. Soc., {\bf 20} (1969), no. 2, 458--464.
[7] A. Branciari, {\it A fixed point theorem for mappings satisfying a general contractive condition of integral type}, Int. J. Math. Math. Sci., {\bf 29} (2002), no. 9, 531--536.
[8] D. Jain, S. Kumar and C. Y. Jung, {\it Common fixed point theorems for weakened compatible mappings satisfying the generalized $\phi-$weak contraction condition}, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., {\bf 26} (2019), no. 2, 99--110.
[9] D. Jain, S. Kumar and S. M. Kang, {\it Weak contraction condition for compatible mappings involving cubic terms of the metric function}, Far East J. Math. Sci., {\bf 103} (2018), no. 4, 799--818.
[10] D. Jain, S. Kumar and S. M. Kang, {\it Generalized weak contraction condition for compatible mappings of types involving cubic terms under the fixed point consideration}, Far East J. Math. Sci., {\bf 103} (2018), no. 8, 1363--1377.
[11] K. Jha, V. Popa and K. B. Manandhar, {\it Common fixed point theorem for compatible of type $(K)$ in metric space}, Int. J. Math. Sci. Eng. Appl., {\bf 8} (2014), 383--391.
[12] C. Y. Jung, D. Jain, S. Kumar and S. M. Kang, {\it Generalized weak contraction condition for compatible mappings of types involving cubic terms of the metric function}, Int. J. Pure. Appl. Math., {\bf 119} (2018), 9--30.
[13] G. Jungck, {\it Compatible mappings and common fixed points}, Int. J. Math. Math. Sci., {\bf 9} (1986), 771--779.
[14] G. Jungck, P. P. Murthy and Y. J. Cho, {\it Compatible mappings of type $(A)$ and common fixed points}, Math. Japon., {\bf 38} (1993), 381--390.
[15] M. S. Khan, M. Swalek and S. Sessa, {\it Fixed point theorems by altering distances between two points}, Bull. Austral. Math. Soc., {\bf 30} (1984), 1--9.
[16] M. Kumar and S. Arora, {\it Fixed point theorems for modified generalized $F$-contraction in $G$-metric spaces}, Bol. Soc. Parana. Mat. {\bf 40} (2022), Paper No. 97.
[17] P. P. Murthy and K. N. V. V. V. Prasad, {\it Weak contraction condition involving cubic terms of $ d(x, y)$ under the fixed point consideration}, J. Math., {\bf 2013} (2013), Article ID 967045. doi: 10.1155/2013/967045
[18] R. P. Pant, {\it A common fixed point theorem under a new condition}, Indian J. Pure Appl. Math., {\bf 30} (1999), no. 2, 147--152.
[19] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, {\it Fixed point theorems for compatible mappings of type $(P)$ and applications to dynamic programming}, Matematiche, {\bf 50} (1995), 15--33.
[20] H. K. Pathak, Y. J. Cho, S. M. Kang and B. Madharia, {\it Compatible mappings of type $(C)$ and common fixed point theorems of Gregus type}, Demonstr. Math., {\bf 31} (1998), 499--518.
[21] H. K. Pathak and M. S. Khan, {\it Compatible mappings of type $(B)$ and common fixed point theorems of Gregus type}, Czechoslov. Math. J., {\bf 45} (1995), 685--698.
[22] G. S. M. Reddy, V. S. Chary, D. S. Chary, S. Radenovi\'{c} and S. Mitrovic, {\it Coupled fixed point theorems fof $JS$-$G$-contraction on $G$-metric spaces}, Bol. Soc. Parana. Mat. {\bf 41} (2023), Paper No. 72.
[23] B. E. Rhoades, {\it Some theorems on weakly contractive maps}, Nonlinear Anal., {\bf 47} (2001), no. 4, 2683--2693.
[24] Y. Rohen and M. R. Singh, {\it Common fixed point of compatible mappings of type $(R)$ in complete metric spaces}, Int. J. Math. Sci. Eng. Appl., {\bf 2} (2008), no. 4, 295--303.
[25] S. Sessa, {\it On a weak commutativity conditions of mappings in fixed point consideration}, Publ. Inst.Math. Beograd, {\bf 32} (46) (1982), 146--153.
[26] S. L. Singh and S. N. Mishra, {\it Coincidences and fixed points of reciprocally continuous and compatible hybrid maps}, Int. J. Math. Math. Sci., {\bf 30} (2002), no. 10, 627--635.
[27] M. R. Singh and Y. M. Singh, {\it Compatible mappings of type $(E)$ and common fixed point theorem of Meir-Keeler type}, Int. J. Math. Sci. Eng. Appl., {\bf 1} (2007), 299--315.
[28] M. R. Singh and Y. M. Singh, {\it On various types of compatible maps and common fixed point theorems for non-continuous maps}, Hacettepe J. Math. Stat., {\bf 40} (2011), no. 4, 503--513.
[29] Q. Zhang and Y. Song, {\it Fixed point theory for generalized $\phi-$weak contractions}, Appl. Math. Lett., {\bf 22} (2009), 75--78.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



