Capacity solution for a nonlocal thermistor problem in Solobev Spaces
Abstract
In this work, we consider a general case of the thermistor problem, in which three nonlinear terms are added to the parabolic equation governing the model. The first and second nonlinearities are present in the source term. While the third nonlinearity is considered in the evolution term. We prove the existence of a weak solution via the Schauder fixed point theorem. Consequently, we establish the existence of a capacity solution to the considered problem in Sobolev spaces.
Downloads
References
Agarwal, P., Sidi Ammi, M. R., & Asad, J.:Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense. Adv. Differ. Equ. 2021(1), 1-11 (2021)
Alt, H. W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z., vol 183(3), 311–341 (1983)
Antontsev, S. N., Chipot, M.:The thermistor problem: existence, smoothness uniqueness, blowup. SIAM J. Math. Anal. 25(4), 1128–1156 (1994)
Aubin JP. Un th´eoreme de compacite. CR Acad. Sci. Paris. 1963; 256(24): 5042-4.
Bartosz, K., Janiczko, T., Szafraniec, P., & Shillor, M.: Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction. J. Appl. Anal. 97(8), 1432-1453. (2018)
Blanchard, D., Francfort, G. A.: Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. SIAM J. Math. Anal. 19(5), 1032–1056 (1988)
Blanchard, D., Francfort, G. A.:A few results on a class of degenerate parabolic equations. Ann. Sc. norm. super. Pisa - Cl. sci. 18(2), 213–249 (1991)
Boccardo, L., & Orsina, L.: An Elliptic System Related to the Stationary Thermistor Problem. SIAM J. Appl. Math. 53(6), 6910-6931 (2021)
Brezis H, Brezis H. Functional analysis, Sobolev spaces and partial differential equations. New York: Springer; 2011 May.
Chen, X.: Existence and regularity of solutions of a nonlinear nonuniformly elliptic system arising from a thermistor problem. (1992)
Cimatti, G.: Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions. Quart. J. Math. 47(1), 117–121 (1989)
Dahi, I., & Ammi, M. R. S.: Existence of renormalized solutions for nonlocal thermistor problem via weak convergence of truncations. Rend. Circ. Mat. 1-20 (2022)
Diaz, J. I., De Thelin, F.:On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)
Eden, A., Michaux, B., & Rakotoson, J. M. Doubly nonlinear parabolic-type equations as dynamical systems. J. Dyn. Differ. Equ. 3, 87-131. (1991)
Gallego, F. Ortegon, Montesinos, Gonzalez M. T.: Existence of a capacity solution to a coupled nonlinear parabolic–elliptic system. Comm. Pure Appl. Math. 6(1), 23 (2007)
Gao, H., Sun, W., & Wu, C.: Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations. IMA J. Numer. Anal. 41(4), 3175-3200 (2021)
Glitzky, A., Liero, M., & Nika, G.: Analysis of a bulk-surface thermistor model for large-area organic LEDs. Port. Math. 78(2), 187-210 (2021)
Glitzky, A., Liero, M., & Nika, G.:Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete Contin. Dyn. Syst. - S. 14(11), 3953 (2021)
Harikrishnan, S., Kanagarajan, K., & Sivasundaram, S.On the study of dynamic analysis of thermistor problem involving ψ−Hilfer fractional derivative. Math. Eng. Sci. Aerosp. 10 (1) (2019)
Howison, S. D., Rodrigues, J. F., and Shillor, M.:Stationary solutions to the thermistor problem. J. Math. Anal. 174(2), 573–588 (1993)
Kavallaris, N. I. and Nadzieja, T.: On the blow-up of the non-local thermistor problem . Proc. Edinb. Math. Soc. 50(2), 389–409 (2007)
Khuddush, M., & Prasad, K. R.: Existence, uniqueness and stability analysis of a tempered fractional order thermistor boundary value problems. The Journal of Analysis. 1-23 (2022)
Lacey, A. A.:Thermal runaway in a non-local problem modelling Ohmic heating: Part I: Model derivation and some special cases. Eur. J. Appl. Math. 6(2), 127–144 (1995)
Lacey, A. A.:Thermal runaway in a non-local problem modelling Ohmic heating. Part II: General proof of blow-up and asymptotics of runaway. Eur. J. Appl. Math. 6(3), 201–224 (1995)
Liu, J., Chai, Z., & Shi, B.: A lattice Boltzmann model for the nonlinear thermistor equations. Int. J. Mod. Phys. C. 31(03), 2050043 (2020)
Lions, J. L.: Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris (1969)
Montesinos, M. T., Gonzalez and Gallego, Ortegon F.:The evolution thermistor problem with degenerate thermal conductivity. Pure Appl. Anal. 1(3), 313 (2002)
Nanwate, A. A., & Bhairat, S. P. : On well-posedness of generalized thermistor-type problem. AIP Conf Proc. 2435(1), 020018. AIP Publishing LLC (2022, March)
Nikolopoulos, C. V., Zouraris, G. E.:Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. In: Progress in Industrial Mathematics at ECMI (2006), 827–832, Springer (2008)
Sidi Ammi, M. R., Torres, D. F. M.:Numerical approximation of the thermistor problem. arXiv: 0711.0597 (2007)
Simon, Jacques.:Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. (4). 146, (1987), 65–96, ISSN 0003-4622, https://doi.org/10.1007/BF01762360
Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68, (1988), SpringVerlag 33. Van Gorder, R. A., Kamilova, A., Birkeland, R. G., & Krause, A. L.:Locating the baking isotherm in a Søderberg electrode: analysis of a moving thermistor model. SIAM J. Appl. Math. 81(4), 1691-1716 (2021)
Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun Part. Diff. Eq. 18(1-2), 199–213 (1993)
Zou, W., Wang, W.: Existence of solutions for some doubly degenerate parabolic equations with natural growth terms. Nonl. Anal. 125, 150–166 (2015)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



