Existence of solution of implicit type initial value fractional dynamic equation on time scales

  • Bikash Gogoi Research Scholar, NITAP
  • Utpal Kumar Saha National Institute of Technology Arunachal Pradesh
  • Bipan Hazarika Gauhati University, Guwahati

Abstract

In this paper we inquire into the existence and uniqueness theorem to the initial value non-linear implicit type fractional dynamic equation by using the newly developed Caputo nabla (∇) fractional derivative operator. The existence of the solution is based on Schauder’s fixed point theorem and Banach contraction theorem. One example has been provide to justified our findings.

Downloads

Download data is not yet available.

References

R. P. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (2002) 1–26.

N. Benkhettou, A. Hammoudi, D. F. M. Torres, Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales, J. King Saud University - Science, 28(1)(2016) 87–92.

N. H. Du, N. C. Liem, C. J. Chyan, S. W. Lin, Lyapunov Stability of Quasilinear Implicit Dynamic Equations on Time Scale, J. Inequa. Appl. Article number: 979705 (2011) 27 pages doi:10.1155/2011/979705.

M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser Boston, (2004).

M. Bohner, A. Peterson, Dynamic Equations On Time Scales: An Introduction with Application, Birkhauster, Boston, MA, (2001).

S. Hilger, Analysis on measure chains, a unified approach to continuous and discrete calculus, Results Math. 18(1990) 18–56.

S. Hilger, Differential and difference calculus, unified, Nonlinear Anal. 30(5)(1997) 2683–2694.

S. Abbas, Dynamic equation on time scale with almost periodic coefficients, Nonautonomous Dynamical Systems, 7(1)(2020) 151–162.

S. S. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.

S. Tikare, Nonlocal Initial Value Problems For First Order Dynamic Equations on Time Scale, Appl. Math. E-Notes, 21(2021) 410–420.

S. Tikare, M. Bohner, B. Hazarika, R. P. Agarwal, Dynamic Local and Nonlocal Initial Value Problems in Banach Spaces, Rend. Circ. Mat. Palermo, II. Ser. (2021). https://doi.org/10.1007/s12215-021-00674-y.

S. Tikare, C. C. Tisdell, Nonlinear dynamic equations on time scales with impulses and nonlocal condition, J. Class. Anal. 16(2)(2020) 125–140.

C. Kou, J. Liu, Y. Ye, Existence and Uniqueness of Solutions for the Cauchy-Type Problems of Fractional Differential Equations, Discrete Dynamics in Nature and Society, 2010, Article ID 142175, https://doi.org/10.1155/2010/142175.

A. V. Letnikov, Theory of differentiation of arbitrary order, Mat. Sb. 3(1868) 1–68 (In Russian).

K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A WileyInterscience Publ. (1993).

O. Ozturk, On oscillation behavior of two dimensional time scale systems, Adv. Differ Equ. 2018, 18(2018). https://doi.org/10.1186/s13662-018-1475-4.

Q. Feng, F. Meng, Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative, Adv. Diff. Equ, (2018) 2018:193.

I. Podlubny, Fractional Differential Equation, Academic Press, New York, (1999).

B. P. Rynne, L2-spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328(2007) 1217–1236.

B. Telli, M. S. Souid, L1-solutions of the initial value problems for implicit differential equations with Hadamard fractional derivative, J. Appl. Anal. 2021; https://doi.org/10.1515/jaa-2021-2048

B. Gogoi, U.K. Saha, B. Hazarika, D.F.M. Torres, H. Ahmad, Nabla Fractional Derivative and Fractional Integral on Time Scales. Axioms 2021, 10, 317. https://doi.org/10.3390/axioms10040317.

D. F. M. Torres, Cauchy’s formula on nonempty closed sets and a new notion of Riemann-Liouville fractional integral on time scales, Appl. Math. Letters 121(2021), 107407, https://doi.org/10.1016/j.aml.2021.107407.

D. F. Zhao, X. X. You, A new fractional derivative on time scales, Advances Appl. Math. Anal. 11(1)(2016) 1–9.

J. Zhu, L. Wu, Fractional Cauchy problem with Caputo nabla derivative on time scales, Abst. Appl. Anal. 23(2015) 486–054.

Z. Zhu, Y. Zhu, Fractional Cauchy problem with Riemann-Liouville fractional delta derivative on time scales, Abst. Appl. Anal. 19(2013) 401–596.1. B. N. Abass and H. R. Yassein. Design of an alternative to polynomial modified rsa algorithm. Computer Science, 19(3):693–696, 2024.

Published
2025-07-13
Section
Research Articles