A new approximation method for PDE constraint optimal control problem solutions

  • Mahmoud Lotfi Farhangian University

Abstract

‎In this article‎, ‎we present a method to solve the optimal control with elliptic partial differential equation constraint‎, ‎based on the new method of spectral element‎. ‎In this new method‎, ‎we use Müntez polynomials as interpolation polynomials‎. ‎Using this method‎, ‎we get the discrete form of the problem‎, ‎which is itself a large scale constrained optimization problem‎. ‎We use the split Bregman method to solve this optimization problem‎. ‎In the end‎, ‎we will check the accuracy and efficiency of the method with some numerical examples‎.

Downloads

Download data is not yet available.

References

J. C. Slater, Electronic Energy Bands in Metals, Harvard University, Phys. Rev. 45, (1934), 794–801.

J. Barta, Uber die Randwertaufgabe der gleichmaßig belasteten Kreisplatte, Z. Angew. Math. Mech, 17(1): 1937, 184–185.

R. A. Frazer, S. W. Jones, and W. N. P. Skan, Approximations to Functions and to the Solutions of Differential Equations, Reports and memoranda, HSMO, 1937.

C. Lanczos, Trigonometric Interpolation of Empirical and Analytical Functions, 1938.

B. Galerkin, Vestnik inzhenerov, Technology, 19:897–908, 1915.

L. Collatz, Gewohnliche Differentialgleichungen, Teubner, Stuttgart, 6th ed., 1981.

B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, with Application in Fluid Mechanics, Heat and Mass Transfer, Math. Sci. Eng., Elsevier Science, 1972.

B. Y. Guo, Spectral Methods and Their Applications, World Scientific Publishing Company, Incorporated, 1998.

W. J. Duncan, Galerkin’s Method in Mechanics and Differential Equations, Reports and memoranda, H.M. Stationery Office, 1938.

W. J. Duncan, Note on Galerkin’s Method for the Treatment of Problems Concerning Elastic Bodies, Phill. Mag., 25(11):628–633, November 2008.

W. J. Duncan, Application of the Galerkin Method to the Torsion Flexure of Cylinders and Prisms, Phill. Mag., 25(11):636–649, November 2008.

W. J. Duncan and D. D. Lindsay, Methods for Calculating the Frequencies of Overtones, Reports and memoranda, H.M. Stationery Office, 1939.

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, 1984.

D. Gottlieb, M. Y. Hussaini, and S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, Mathematics in Science and Engineering, Elsevier Science, (1986).

A. Hrennikoff, Solution of Problems of Elasticity by the Framework Method, Journal of Applied Mechanics, 8(4): (1941), 169–175.

R. Courant, Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Bulletin of the American Mathematical Society, 49: (1943), 1–23. doi:10.1090/s0002-9904-1943-07818-4.

G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice Hall, (1973). ISBN 978-0-13-032946-2.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, ButterworthHeinemann, (2013). ISBN 978-0-08-095135-5.

K. J. Bathe, Finite Element Procedures, Cambridge, MA: Klaus-Jurgen Bathe, (2006). ISBN 978-0979004902.

A. T. Patera, A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion, Journal of Computational Physics, 54, (1984), 468–488.

E. Priolo and G. A. Seriani, A Numerical Investigation of Chebyshev Spectral Element Method for Acoustic Wave Propagation, Proceedings of the 13th IMACS Conference, 54, (1991), 154–172.

C. Zhu, G. Qin, and J. Zhang, Implicit Chebyshev Spectral Element Method for Acoustic Wave Equations, Finite Elements in Analysis and Design, Volume 47, Issue 2, (2011), 184–194. https://doi.org/10.1016/j.finel.2010.09.004.

Y. Li and X. K. Li, The Chebyshev Spectral Element Approximation with Exact Quadratures, Journal of Computational and Applied Mathematics, Volume 296, (2016), 320–333. https://doi.org/10.1016/j.cam.2015.09.021.

A. Quaglino, M. Gallieri, J. Masci, and J. Koutn, Accelerating Neural ODEs with Spectral Elements, ArXiv, abs/1906.07038, (2019).

M. Lotfi and A. Alipanah, Legendre Spectral Element Method for Solving Sine-Gordon Equation, Advances in Differential Equations, 2019, 113, (2019). https://doi.org/10.1186/s13662-019-2059-7.

M. Saffarian and A. Mohebbi, Numerical Solution of Two and Three Dimensional Time Fractional Damped Nonlinear Klein–Gordon Equation Using ADI Spectral Element Method, Applied Mathematics and Computation, Volume 405, (2021), 126–182. https://doi.org/10.1016/j.amc.2021.126182.

M. Abbaszadeh and M. Dehghan, The Proper Orthogonal Decomposition Modal Spectral Element Method for Two-Dimensional Viscoelastic Equation, Thin-Walled Structures, Volume 161, (2021), 1–14. https://doi.org/10.1016/j.tws.2020.107429.

M. Dehghan, N. Shafieeabyaneh, and M. Abbaszadeh, Application of Spectral Element Method for Solving Sobolev Equations with Error Estimation, Applied Numerical Mathematics, Volume 158, (2020), 439–462. https://doi.org/10.1016/j.apnum.2020.08.010.

G. Duvaut and J. L. Lions, The Inequalities in Mechanics and Physics, Springer, Berlin, (1973).

F. S. Falk, Approximation of a Class of Optimal Control Problems with Order of Convergence Estimates, Journal of Mathematical Analysis and Applications, (1973), 28–48.

D. A. French and J. T. King, Approximation of an Elliptic Control Problem by the Finite Element Method, Numerical Functional Analysis and Optimization, (1991), 299–314.

T. Geveci, On the Approximation of the Solution of an Optimal Control Problem Governed by an Elliptic Equation, RAIRO Analyse Numerique, (1979), 313–328.

W. Alt, On the Approximation of Infinite Optimization Problems with an Application to Optimal Control Problems, Applied Mathematics and Optimization, (1984), 15–27.

K. Malanowski, Convergence of Approximations vs. Regularity of Solutions for Convex, Control Constrained, Optimal Control Systems, Applied Mathematics and Optimization, (1982), 69–95.

D. Tiba, Lectures on the Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Jyvaskyla, (1995).

J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape Design, Wiley, Chichester, (1989).

M. Lotfi, Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problems with Partial Differential Equation Constraint, International Journal of Difference Equations, Vol. 15, No. 1, (2020), 11–29.

Y. Chen, N. Yi, and W. Liu, A Legendre–Galerkin Spectral Method for Optimal Control Problems Governed by Elliptic Equations, SIAM Journal on Numerical Analysis, 46(5), (2008), 2254–2275.

M. Lotfi and A. Alipanah, Legendre Spectral Element Method for Solving Volterra-Integro Differential Equations, Results in Applied Mathematics, Vol. 7, (2020), 1–11.

M. Lotfi and A. Alipanah, Using Legendre Spectral Element Method with Quasi-Linearization Method for Solving Bratu’s Problem, Computational Methods in Differential Equations, Vol. 7, (2019), 580–588.

M. Lotfi and A. Alipanah, Legendre Spectral Element Method for Solving Sine-Gordon Equation, Advances in Differential Equations, Vol. 113, (2019), 1–20.

Q. Ai, H. Y. Li, and Z. Q. Wang, Diagonalized Legendre Spectral Methods Using Sobolev Orthogonal Polynomials for Elliptic Boundary Value Problems, Applied Numerical Mathematics, 127, (2018), 196–210.

Y. Wang, G. Qin, and Z. Q. Wang, An Improved Time-Splitting Method for Simulating Natural Convection Heat Transfer in a Square Cavity by Legendre Spectral Element Approximation, Computers & Fluids, 174, (2018), 122–134.

A. Khan, C. S. Upadhyay, and M. Gerritsma, Spectral Element Method for Parabolic Interface Problems, Computer Methods in Applied Mechanics and Engineering, 337, (2018), 66–94.

Q. Zhuang and L. Chen, Legendre–Galerkin Spectral-Element Method for the Biharmonic Equations and Its Applications, Computers and Mathematics with Applications, Volume 74, (2017), 2958–2968.

F. Zeng, H. Ma, and T. Zhao, Alternating Direction Implicit Legendre Spectral Element Method for Schrodinger Equations, Journal of Shanghai University (Natural Science Edition), 17(6), (2011), 724–727.

F. X. Giraldo, Strong and Weak Lagrange–Galerkin Spectral Element Methods for the Shallow Water Equations, Computers & Mathematics with Applications, 45, (2003), 97–121.

S. B. Hazra, Large-Scale PDE-Constrained Optimization in Applications, Springer-Verlag Berlin Heidelberg, (2010).

M. Hinze, Optimal and Instantaneous Control of the Instationary Navier-Stokes Equations, Habilitation thesis, Technische Universitat Berlin, Berlin, Germany, (2000).

T. Goldstein and S. Osher, The Split Bregman Method for L1-Regularized Problems, SIAM Journal on Imaging Sciences, (2009), 323–343.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An Iterative Regularization Method for Total Variation-Based Image Restoration, MMS, (2005), 460–489.

Ch. H. Muntz, Uber den Approximationssatz von Weierstrass, H. A. Schwarz’s Festschrift, Berlin, pp., (1914), 303–312.

O. Szasz, Uber die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77: (1916), 482–496. doi:10.1007/BF01456964.

G. V. Badalyan, Generalization of Legendre Polynomials and Some of Their Applications, Akad. Nauk. Armyan. SSR Izv. Fiz.-Mat. Estest. Tekhn. Nauk, 8(5), (1956), 1–28, (1955) and 9(1), 3–22, (Russian, Armenian summary).

A. K. Taslakyan, Some Properties of Legendre Quasipolynomials with Respect to a Muntz System, Mathematics, Erevan Univ., Erevan, 2, (1984), 179–189 (Russian, Armenian summary).

J. Shen and Y. Wang, Muntz–Galerkin Methods and Applications to Mixed Dirichlet–Neumann Boundary Value Problems, SIAM Journal on Scientific Computing, 38(4): (2016), 2357–2381.

S. Hosseinpour, A. Nazemi, and E. Tohidi, Muntz-Legendre Spectral Collocation Method for Solving Delay Fractional Optimal Control Problems, Journal of Computational and Applied Mathematics, 351, (2019), 344–363.

S. Sabermahani and Y. Ordokhani, A New Operational Matrix of Muntz-Legendre Polynomials and Petrov Galerkin Method for Solving Fractional Volterra-Fredholm Integrodifferential Equations, Computational Methods in Differential Equations, 8, (2020), 408–423.

P. Mokhtary, F. Ghoreishi, and H. M. Srivastava, The Muntz Legendre Tau Method for Fractional Differential Equations, Applied Mathematical Modelling, 40(2), (2016), 671–684.

G. V. Milovanovic, Muntz Orthogonal Polynomials and Their Numerical Evaluation, International Series of Numerical Mathematics, Vol. 131, (1999).

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, (1971).

J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, (2007).

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, New York, NY: Springer-Verlag, (2004).

L. N. Hand and J. D. Finch, Analytical Mechanics, Cambridge University Press, (2008).

C. Pozrikidis, Introduction to Finite and Spectral Element Methods Using Matlab, Chapman and Hall/CRC, (2005).

L. M. Bregman, The Relaxation Method of Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming, USSR Computational Mathematics and Mathematical Physics, (1967), 200–217.

S. Osher, Y. Mao, B. Dong, and W. Yin, Fast Linearized Bregman Iterations for Compressed Sensing and Sparse Denoising, UCLA CAM Report, (2010), 08–37.

W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman Iterative Algorithms for L1-Minimization with Applications to Compressed Sensing, SIAM Journal on Imaging Sciences, (2008), 142–168.

J. F. Cai, S. Osher, and Z. Shen, Linearized Bregman Iterations for Compressed Sensing, UCLA CAM Report, (2009), 1515–1536.

L. He, T. Chiun Chang, and S. Osher, MR Image Reconstruction from Sparse Radial Samples by Using Iterative Refinement Procedures, Proceedings of the 13th Annual Meeting of ISMRM, (2006), 06–35.

E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman, UCLA CAM Report, (2009), 09–31.

Published
2025-07-13
Section
Research Articles