Study of the stationary solution of non-isothermal Bingham flow with nonlinear boundary conditions in a thin domain

  • Abdelali Malek
  • Abdelkader Saadallah
  • Fares Yazid Amar Telidjy Unibersity of Laghouat
  • Nahir Chougui
  • Fatima Siham Djeradi

Abstract

We study in this manuscript the asymptotic behavior of an incompressible Bingham fluid in a three-dimensional thin
domain with Tresca friction law coupled with A nonlinear stationary, non-isothermal and incompressible model,
Firstly, we demonstrate the results for the existence and uniqueness of the weak solution. Then we reformulate the
problem in fixed domain, and we also then we show the estimates for the velocity field , the pressure and the temperature.
Finally we obtain the limit problem with the specific Reynolds equation and prove the uniqueness of the limit.

Downloads

Download data is not yet available.

References

G. Bayada, M. Boukrouche, On a free boundary problem for the Reynolds equation derived from the Stokes systems with Tresca boundary condition, J. Math. Anal. Appl. 282(1), 212–231, (2003).

M. Boukrouche, R. El Mir, Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law, Nonlinear Analysis: Theory, Methods & Applications 59(1–2), 85–105, (2004).

M. Boukrouche, F. Saidi, Non-isothermal lubrication problem with Tresca fluid–solid interface law. Part II, Asymptotic behavior of weak solutions, Nonlinear Analysis: Real World Applications 9(4), 1680–1701, (2008).

H. Brezis, Analyse fonctionnelle, Theorie et applications, Masson, 1987.

B. Q. Dong, Z. M. Chen, Asymptotic stability of non-Newtonian flows with large perturbation in R2, Appl. Math. Comput. 173(1), 243–250, (2006).

H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Non-linear Functional Analysis, E. Zarantonello Ed., Acad. Press, 1971.

R. Bunoiu, S. Kesavan, Asymptotic behaviour of a Bingham fluid in thin layers, J. Math. Anal. Appl. 293(2), 405–418, (2004).

E. J. Dean, R. Glowinski, G. Guidoboni, Analyse numerique des inequations variation-nelles, Tome 1: Theorie generale premieres applications, Methodes Mathematiques de l’Informatique, Paris, 1976.

E. J. Dean, R. Glowinski, G. Guidoboni, On the numerical simulation of bingham visco-plastic flow: Old and new results, Journal of Non-Newtonian Fluid Mechanics, 142(1-3), 36–62, (2007).

J. C. De Los Reyes, S. Gonz alez, Path following methods for steady laminar Bingham flow in cylindrical pipes, ESAIM: Mathematical Modelling and Numerical Analysis 43(1), 81–117, (2009).

M. Dilmi, H. Benseridi, A. Saadallah, Asymptotic Analysis of a Bingham Fluid in a Thin Domain with Fourier and Tresca Boundary Conditions, Adv. Appl. Math. Mech. 6(6), 797–810, (2014).

G. Duvautand, J. L. Lions, Les inequations en mecanique et en physique , Paris, 197.

R. Elmir, Comportement asymptotique d’un fluide de Bingham dans un filmi mince avec des conditions non-lineaires sur le bord, Th`ese de Doctorat, Universite Saint Etienne, France, 2006.

M. Fuchs, G. Seregin, Some remarks on non-Newtonian fluids including nonconvex perturbations of the Bingham and Powell-Eyring model for viscoplastic fluids, Math. Models Methods Appl. Sci. 7(3), 405–433, (1997).

M .Fuchs, G. Seregin, Regularity results for the quasi-static Bingham variational inequality in dimensions two and three, J. Mathematische Zeitschrift, 227, 525–541, (1998).

M. Fuchs, J. F. Grotowski, J. Reuling, On variational models for quasi-static Bingham fluids, Math. Methods Appl. Sci. 19(12), 991–1015, (1996).

F. Messelmi, Ecoulement Dynamique du Fluide de Bingham Avec Loi de Frottement du Type Sous-Differentiel , Th`ese de Doctorat, Universite Ferhat Abbas, 2006.

P. P. Mosolov, V. P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium, J. Appl. Math. Mech. 29(3), 468–492, (1995).

A. Saadallah, H. Benseridi , Asymptotic analysis of a dynamic flow of the Bingham fluid, Dynamics of Continuous, Dynamics of Continuous Discrete and Impulsive Systems: Series B; Applications and Algorithms 28, 197-213, (2021).

A. Saadallah, H. Benseridi, M. Dilmi, Study of the Non-isothermal Coupled Problem with Mixed Boundary Conditions in a Thin Domain with Friction Law, Journal of Siberian Federal University. Mathematics and Physics 11(6), 738–752, (2018).

A. Saadallah, N. Chougui, F. Yazid, M. Abdalla, B. B. Cherif, I. Mekawy, Asymptotic Behavior of Solutions to Free Boundary Problem with Tresca Boundary Conditions, Journal of Function Spaces Volume 2021, 1-9, (2021).

F. Yazid, A. Saadallah, D. Ouchenane, N. Chougui, M. Abdalla, Asymptotic behavior of weak solutions of flow nonisothermal of Herschel-Bulkley fluid to free boundary, Discrete Dynamics in Nature and Society, (2022).

Published
2025-04-15
Section
Articles