The Sequences of Fibonacci and Lucas for Quadratic Fields

  • PABLO LAM-ESTRADA Escuela Superior de F\'isica y Matem\'aticas, Departamento de Matem\'aticas, Instituto Polit\'ecnico Nacional (Unidad Zacatenco), CDMX, M\'exico.
  • MYRIAM ROSALIA MALDONADO-RAMIREZ Escuela Superior de F\'isica y Matem\'aticas, Departamento de Matem\'aticas, Instituto Polit\'ecnico Nacional (Unidad Zacatenco), CDMX, M\'exico.
  • JOSE LUIS LOPEZ-BONILLA Escuela Superior de Ingenier\'ia Mec\'anica y El\'ectrica, Departamento de Ingenier\'ia en Comunicaciones y Electr\'onica, Instituto Polit\'ecnico Nacional (Unidad Zacatenco), CDMX, M\'exico.
  • FAUSTO JARQUIN-ZARATE Universidad Aut\'onoma de la Ciudad de M\'exico, Academia de Matem\'aticas, Plantel San Lorenzo Tezonco, CDMX, M\'exico
  • R. RAJENDRA Department of Mathematics, Field Marshal K.M. Cariappa College (A Constituent College of Mangalore University), Madikeri-571 201, India
  • Siva Kota Reddy Polaepalli JSS Science and Technology University http://orcid.org/0000-0003-4033-8148

Abstract

We construct the sequences of Fibonacci and Lucas in any quadratic
field $\mathbb{Q}(\sqrt{d}\,)$ with $d>0$ square free, noting that
the general properties remain valid as those given by the
classical sequences of Fibonacci and Lucas for the case $d = 5$,
under the respective variants. For this construction, we use the
fundamental unit of $\mathbb{Q}(\sqrt{d}\,)$ and then we observe the
generalizations for any unit of $\mathbb{Q}(\sqrt{d}\,)$. Under
certain conditions some of these constructions correspond to
$k$-Fibonacci sequence for some $k\in \mathbb{N}$. Further, for
both sequences, we obtain the generating function, Golden ratio,
Binet's formula and some identities that they keep.

Downloads

Download data is not yet available.

Author Biography

Siva Kota Reddy Polaepalli, JSS Science and Technology University

Professor, Departmnet of Mathematics, JSS Science and Technology, Mysuru-570 006, India

Published
2025-01-21
Section
Research Articles