On a solvable bidimensional system of rational difference equations via Jacobsthal numbers

  • Ahmed Ghezal University Centre Abdelhafid Boussouf Mila: Centre Universitaire Abdelhafid Boussouf Mila
  • Imane Zemmouri Department of Mathematics, University of Annaba, Elhadjar 23, Annaba, Algeria.

Abstract

In this paper, we are interested in the closed-form solution of the following bidimensional system of rational of (m+1)-order, p_{n+1}=(1/(7+8q_{n-m})),q_{n+1}=(1/(7+8p_{n-m})),n,m∈N₀, and the initial values p_{-j} and q_{-j}, j∈{0,1,...,m} are real numbers do not equal -7/8. We show that the solutions of this bidimensional system are associated with Jacobsthal numbers. As a consequence, these solutions are also associated with Jacobsthal-Lucas numbers. It is shown that the global stability of positive solutions of this system holds. Our results are illustrated via numerical examples.

Downloads

Download data is not yet available.

References

R. Abo-Zeid. Global behavior of two third order rational difference equations with quadratic terms. Mathematica Slovaca, 69 (1), 147 − 158 (2019) .

R. Abo-Zeid., C. Cinar. Global behavior of the difference equation xn+1 = Axn−1/ B−Cxnxn−2. Boletim da Sociedade Paranaense de Matematica, 31 (1) , 43 − 49 (2013).

N. Attia., A. Ghezal. Global stability and (Co)Balancing numbers in a system of rational difference equations. Electronic Research Archive, Articles in Press.

M. Berkal., R. Abo-Zeid. On a rational (p + 1)th order difference equation with quadratic term. Universal Journal of Mathematics and Applications, 5(4), 136 − 144 (2022) .

E. M., Elsayed. Solutions of rational difference system of order two. Mathematical and Computer Modelling, 55 (3 − 4), 378 − 384 (2012).

E. M., Elsayed. Solution for systems of difference equations of rational form of order two. Computational and Applied Mathematics, 33 (3), 751 − 765 (2014).

E. M. Elsayed., H. S. Gafel. On the solutions and behavior of rational systems of difference equations. Boletim da Sociedade Paranaense de Matematica, Articles in Press.

E. M. Elsayed., B. S. Alofi., and A. Q. Khan. Solution expressions of discrete systems of difference equations. Mathematical Problems in Engineering, 2022, Article ID 3678257, 1 − 14.

E. M. Elsayed.,B. S. Alofi. Dynamics and solutions structures of nonlinear system of difference equations. Mathematical Methods in the Applied Sciences, 1 − 18 (2022).

A. Ghezal., M. Balegh and I. Zemmouri. Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 9(2), 3576 − 3591 (2024).

A. Ghezal., M. Balegh and I. Zemmouri. Markov-switching threshold stochastic volatility models with regime changes. AIMS Mathematics, 9(2), 3895 − 3910 (2024).

A. Ghezal., I. Zemmouri. On Markov-switching asymmetric log GARCH models: stationarity and estimation. Filomat, 37 (29) , 1 − 19 (2023).

A. Ghezal., I. Zemmouri. On the Markov-switching autoregressive stochastic volatility processes. Sema Journa, 1 − 15 (2023).

A. Ghezal. A doubly Markov switching AR model: Some probabilistic properties and strong consistency. Journal of Mathematical Sciences, 271(6), 66–75 (2023).

A. Ghezal. Spectral representation of Markov-switching bilinear processes. S˜ao Paulo Journal of Mathematical Sciences, 1 − 21 (2023).

A. Ghezal. Note on a rational system of (4k +4)−order difference equations: periodic solution and convergence. Journal of Applied Mathematics and Computing, 69(2), 2207 − 2215 (2023).

A. Ghezal., I. Zemmouri. Higher-order system of p−nonlinear difference equations solvable in closed-form with variable coefficients. Boletim da Sociedade Paranaense de Matematica, 41, 1 − 14 (2022).

A. Ghezal., I. Zemmouri. On a solvable p−dimensional system of nonlinear difference equations. Journal of Mathematical and Computational Science, 12(2022), Article ID 195.

A. Ghezal., I. Zemmouri. Representation of solutions of a second-order system of two difference equations with variable coefficients. Pan-American Journal of Mathematics, 2, 1 − 7 (2023).

A. Ghezal. QMLE for periodic time-varying asymmetric log GARCH models. Communications in Mathematics and Statistics, 9(3), 273 − 297 (2021).

A. Ghezal., I. Zemmouri. On solutions of a two-dimensional (m + 1) −order system of difference equations via Pell numbers. Boletim da Sociedade Paranaense de Matematica, Articles in Press.

A. Ghezal., I. Zemmouri. Solution forms for generalized hyperbolic cotangent type systems of p−difference equations. Boletim da Sociedade Paranaense de Matematica, Articles in Press.

A. Ghezal., I. Zemmouri. Global stability of a multi-dimensional system of rational difference equations of higher-order with Pell-coeffcients. Boletim da Sociedade Paranaense de Matematica, Articles in Press.

A. Ghezal., I. Zemmouri. On the Balancing-bilinear system of difference equations: solutions via some number sequences and global stability. Miskolc Mathematical Notes, Articles in Press.

A. Ghezal., I. Zemmouri. Solvability of a bidimensional system of rational difference equations via Mersenne numbers. Palestine Journal of Mathematics, Articles in Press.

A. Ghezal., I. Zemmouri. Convergence of solutions of a p−dimensional system of sk−order rational recursive equations. Boletim da Sociedade Paranaense de Matematica, Submit.

A. Ghezal., I. Zemmouri. M−estimation in periodic Threshold GARCH models: Consistency and asymptotic normality. Miskolc Mathematical Notes, Articles in Press.

A Al-Kateeb. A generalization of Jacobsthal and Jacobsthal-Lucas numbers. Jordan Journal of Mathematics and Statistics, 14(3), 467 − 481 (2021) .

M. Kara. Investigation of the global dynamics of two exponential-form difference equations systems. Electronic Research Archive 31(11), 6697 − 6724 (2023).

A. S. Kurbanlı., C., Cinar and I., Yalcinkaya. On the behavior of positive solutions of the system of rational difference equations xn+1 = xn−1/ (ynxn−1 + 1) , yn+1 = yn−1/ (xnyn−1 + 1). Mathematical and Computer Modelling, 53 (5 − 6) , 1261 − 1267 (2011a) .

A. S. Kurbanlı. On the behavior of solutions of the system of rational difference equations xn+1 = xn−1/ (ynxn−1 − 1) , yn+1 = yn−1/ (xnyn−1 − 1) , zn+1 = zn−1/ (ynzn−1 − 1) . Discrete Dynamics Natural and Society, 2011, Article ID 932362, 1 − 12 (2011b) .

A.Y. Ozban. On the positive solutions of the system of rational difference equations xn+1 = 1/yn−k, yn+1 = yn/xn−myn−m−k. Journal of Mathematical Analysis and Applications. 323 (1), 26 − 32 (2006).

D. Simsek., B. Ogul and C. Cınar. Solution of the rational difference equation xn+1 = xn−17/ (1 + xn−5.xn−11). Filomat 33(5), 1353 − 1359 (2019) .

D. Simsek., Ogul, B. Solutions of the rational difference equations xn+1 = xn−(2k+1) /(1 + xn−k) . MANAS Journal of Engineering, 5(3), 57 − 68 (2017a).

D. Simsek., Abdullayev, F. On the recursive sequence xn+1 = xn−(4k+3)/ 1 + xn−kxn−(2k+1)xn−(3k+2)). Journal of Mathematical Sciences, 6(222), 762 − 771 (2017b).

S. Stevic, M.A.Alghamdi., A. Alotaibiand and E.M. Elsayed. On a class of solvable higher-order difference equations. Filomat, 31(2), 461 − 477 (2017).

Y., Yazlik., Tollu, D.T and N. Taskara. Behaviour of solutions for a system of two higher-order difference equations. Journal of Science and Arts, 45(4), 813 − 826 (2018).

Published
2025-08-25
Section
Research Articles