On Zweier I-Convergent Triple Sequence Spaces

  • Mohd. Imran Idrisi Chandigarh University
  • Nazneen Khan
  • Kavita Saini Chandigarh University
  • Mobeen Ahmad Presidency University

Abstract

In this article we introduce the Zweier I-convergent triple sequence spaces 3Z^I, 3Z^I_0, 3Z^I_{\infty}
and study some of their algebraic and topological properties like convergence free, symmetricity,
solidity, monotonicity, etc. Also, we have proven some inclusion relations of these spaces.

Downloads

Download data is not yet available.

Author Biographies

Mohd. Imran Idrisi, Chandigarh University

Assistant Professor

Department of Mathematics,

University Institute of Sciences,

Chandigarh University,

Punjab, India

Kavita Saini, Chandigarh University

Assistant Professor

Department of Mathematics,

University Institute of Sciences,

Chandigarh University,

Punjab, India

Mobeen Ahmad, Presidency University

Assistant Professor,

Department of Mathematics,

School of Engineering,

Presidency University,

Bangalore, India

References

Altay,B.,Basar,F. and Mursaleen, On the Euler sequence space which include the spaces lp and l∞.,Inform.Sci.176(10),1450-1462,(2006).

Basar,F. and Altay,B., On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainion Math.J.55,(2003).

Braha,N.L.,Srivastava,H.M. and Mohiuddine,S.A., A Korovin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vall´ee Poussin mean, Appl.Math.Comput.,228(2014),162-169.

Das,B.C.,Some I-convergent triple sequence spaces defined by a sequence of modulus function,Proyecciones Journal of Mathematics,Vol.36,117-130,(2017).

Datta,A.J.,Esi,A.,Tripathy,B.C., Statistically convergent triple sequence spaces defined by Orlicz function,J.Math.Anal.,4(2),16-22,(2013).

Debnath,S.,Sarma,B. and Das,B.,C.,Some generalized triple sequence spaces of real numbers,J.Nonlinear Anal. Optimi.,6(1),71-79,(2015).

Esi,A.,On some triple almost lacunary sequence spaces defined by orlicz functions,Research and Reviews: Discrete Mathematical Structures,1(2),16-25,(2014).

Esi,A. and Necdet,C.,M.,Almost convergence of triple sequences,Global J.Math. Anal.2(1),6-10,(2014).

Esi,A.,Savas,A.,On lacunary statistically convergent triple sequences in probabilistic normed space,Appl.Math.inf.Sci.,9(5),2529-2534,(2015).

Fast,H.,Surla convergence statistique, Colloq.Math.,(2),241-244,(1951).

Idrisi, M.I, Saini,K.,Ahmad,M., and Aslam,S.A study of fuzzy anti-λ-ideal convergent triple sequence spaces, Journal of Applied Analysis, 2023.

Khan,V.A.,Idrisi,M.I., On ideal convergence of triple sequences in intuitionistic fuzzy normed space defined by compact operator, Proyecciones journal of Mathematics,40(5),1227-1247(2021).

Khan,V.A.,Idrisi,M.I., On I-convergent triple sequence spaces defined by compact operator and an orlicz function, Turkic World Mathematical Society Journal of Applied and Engineering Mathematics,11(4),1012-1022(2021).

Khan,V.A.,Idrisi,M.I.,I-Convergent Difference Sequence Spaces defined by Compact Operator and Sequence of Moduli, ICIC Express Letters, 13(10),907-912, (2019).

Khan,V.A.,Idrisi,M.I.,On Paranorm I-Convergent Double Sequence Spaces Defined by Compact Operator,International Journal of Advanced and Applied Science,6(9),58-63(2019).

Khan,V.A.,Idrisi,M.I.,On Zweier difference ideal convergence of double sequences in random 2-normed spaces,Transylvanian Review Vol.XXVI.No 34.(2018).

Khan,V.A.,Idrisi,M.I.,Some Fuzzy Anti λ-Ideal Convergent Double Sequence Spaces,Journal of Intelligent and Fuzzy system. 38(2),1617-1622(2020).

Kizmaz,H., On certain sequence spaces,Canad.Math.Bull.,24(2),169-176,(1981).

Kostyrko,P.,Salat,T.,Wilczynski,W.,I-convergence,Real Anal.Exch.,26(2),669-686,(2000).

Malkowsky,E.,Recent results in the theory of matrix transformation in sequence spaces,Math. Vesnik,49,187-196(1997).

Mursaleen,M. and Edly H.H., Statistical convergence of double sequences,J.Math.Anal.Appl.,(288),223-231,(2003).

Mursaleen,M., Khan,A., and Srivastava,H.M.,Operators constructed by means of q-Lagranges polynomial and Astatistical approximation theorems, Math. Comput.Modelling,55(2012)2040-2051.

Ng,P.,N.and Lee P.,Y.,Cesaro sequence spaces of non-absolute type,Comment.Math.Pracc.Math.,2 0(2), 429-433 (1978).

Pringsheim,A.,Zur theorie der zweifach unendlichen Zahlenfolgen ,Math.Ann.,(53),289-321,(1900).

Rajagopal,N.,Subramanian,N., and Thirunavukkarasu,P.,The triple entire of intuitionistic ideal of fuzzy real numbers over p-metric spaces defined by Musielak orlicz functions,118(20),577-588,(2018).

Sahiner,A.,Gurdal,M. and Duden,K., Triple sequences and their statistical convergence, Selcuk.J.Appl.Math.,8(2),49-55,(2007).

Sahiner,A.,Tripathy,B.C., Some I-related properties of Triple sequences,Selcuk.J.Appl. Math.,9(2),9-18,(2008).

Salat,T.,Tripathy,B.C.,Ziman,M.On some properties of I-convergence,Tatra Mountain Mathematical Publications,669-686,(2000).

Schoenberg,I.J., The intregrability of certain functions and related summability methods,Amer.Math.Monthly,(66),361-375,(1959).

Sengonul,M.,On The Zweier Sequence Space,Demonstratio mathematica,Vol.XL No.(1). 181-196 (2007).

Steinhaus,H.,Sur la convergence ordinaire et la convergence asymtotique,Colloq.Math.,(2),73-74, (1951).

Tripathy,.B.C.,Statistical convergence double sequences,Tamkang J.Math.,34(3),231-237,(2003).

Tripathy,.B.C., On I-convergent double sequences, Soochow J. of Math.,31(4),549-560,(2005).

Wang,C.S.,On Norlund sequence spaces,Tamkang J.Math.(9),269-274,(1978).

Published
2025-05-29
Section
Articles