On a generalization of $r$-ideals in commutative rings
Abstract
Let $R$ be a commutative ring with nonzero identity, $J$ a proper ideal of $R$. In this paper, we present the concept of $H_J$-ideals in commutative rings. A proper ideal $I$ of R is called an $H_J$-ideal if whenever $a$, $b$ $\in R$ with $ab\in I$ and $(J:a) =J$ such that $(J:a)=\{x \in R : xa \in J\}$, then $b\in I$. Our purpose is to extend the concept of $r$-ideals to $H_J$-ideals of commutative rings. Then, we investigate the basic properties of $H_J$-ideals and also, we give some examples with regard to $H_J$-ideals.
Downloads
References
M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, (1969).
D. D. Anderson and M. Bataineh, Generalizations of prime ideals. Communications in Algebra. 36, 686-696, (2008).
D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1, 3-56, (2009).
A. Badawi, A. El Khalfi and N. Mahdou, On (m, n)-absorbing prime ideals and (m, n)-absorbing ideals of commutative rings. S˜ao Paulo Journal of Mathematical Sciences, (2023), 10.1007/s40863-022-00349-1.
M. Boisen and P.B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canad. J. Math. 29, 722-737, (1977).
M. D’Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, 155-172, (2009).
M. D’Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214(9), 1633-1641, (2010).
M. D’Anna and M. Fontana, The amalgamated duplication of ring along an ideal: the basic properties, J. Algebra Appl. 6(3), 241-252, (2007).
M. D’Anna, C.A. Finocchiaro, M. Fontana, New algebraic properties of an amalgamated algebras along an ideal, Comm. Algebra 44(5), 1836-1851, (2016).
D.E Dobbs, A. El Khalfi and N. Mahdou Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47(5), 2060-2077, (2019).
M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Communications in Algebra 40 (4), 1268-1279, (2012).
A. El Khalfi, M. Issoual, N. Mahdou and A. Reinhart, Commutative rings with one-absorbing factorization, Commun. Algebra, 49(6) , 2689-2703, (2021).
A. El Khalfi, H. Kim and N. Mahdou,Amalgamation extension in commutative ring theory, a survey, Moroccan Journal of algebra and Geometry with applications, 1(1), 139-182, (2022).
S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin, (1989).
R. Mohamadian, r-ideals in commutative rings, Turk J. Math 39, 733-749, (2015).
J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, (1988).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



