On properties of s-convex functions on the co-ordinates in three and higher dimensions
Abstract
In the present paper, we discuss the class of s-convex functions on the co-ordinates for three variables and prove certain new Hermite-Hadamard type inequalities for such mappings. Using geometric reasoning, we postulate how such results appear in higher dimensions. Furthermore, we delve into various intriguing aspects of the associated H function.
Downloads
References
Alomari, M., & Darus, M. The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates, Int. J. Math. Anal, 2(13), 629-638, (2008).
Alomari, M., & Darus, M. Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci, 3(32), 1557-1567, (2008).
Alomari, M., & Darus, M. Hadamard-type inequalities for s-convex functions, Int. Math. Forum (Vol. 3, No. 40, pp. 1965-1975), (2008).
Barsam, H., Ramezani, S. M., & Sayyari, Y. On the new Hermite–Hadamard type inequalities for s-convex functions, Afrika Matematika, 32(7-8), 1355-1367, (2021).
Breckner, W. W.Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, Publ. Inst. Math.(Beograd)(NS), 23(37), 13-20 (1978).
Dragomir, S. S., & Fitzpatrick, S. On the new The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Mathematica, 32(4), 687-696. (1999).
Dragomir, S. S. .On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese journal of mathematics, 775-788, (2001).
Kirmaci, U. S., Bakula, M. K., Ozdemir, M. E., & Pecaric, J. Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193(1), 26-35, (2007).
Korus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions, Aequationes mathematicae, 93(3), 527-534, (2019).
Latif, M. A., & Dragomir, S. S. On some new inequalities for differentiable co-ordinated convex functions, Journal of Inequalities and Applications, 2012(1), 1-13, (2012).
Ozcan, S., & Iscan, I. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications, Journal of inequalities and applications, 2019, 1-11. (2019).
Ozdemir, M. E., Latif, M. A., & Akdemir, A. O. On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates, Journal of Inequalities and Applications, 2012, 1-13,(2012).
Ozdemir, M. E., Kavurmaci, H., Akdemir, A. O., & Avci, M. Inequalities for Convex and s-Convex Functions on δ = [a, b] × [c, d], arXiv preprint arXiv:1101.0944, (2011).
Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense, AIMS Math, 6(7), 7719-7732, (2021).
Xi, B. Y., & Qi, F. Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, arXiv preprint arXiv:1406.5409, (2014).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



