On properties of s-convex functions on the co-ordinates in three and higher dimensions

  • Danish Malik National Institute of Technology Srinagar
  • Zamrooda Jabeen

Abstract

In the present paper, we discuss the class of s-convex functions on the co-ordinates for three variables and prove certain new Hermite-Hadamard type inequalities for such mappings. Using geometric reasoning, we postulate how such results appear in higher dimensions. Furthermore, we delve into various intriguing aspects of the associated H function.

Downloads

Download data is not yet available.

References

Alomari, M., & Darus, M. The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates, Int. J. Math. Anal, 2(13), 629-638, (2008).

Alomari, M., & Darus, M. Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci, 3(32), 1557-1567, (2008).

Alomari, M., & Darus, M. Hadamard-type inequalities for s-convex functions, Int. Math. Forum (Vol. 3, No. 40, pp. 1965-1975), (2008).

Barsam, H., Ramezani, S. M., & Sayyari, Y. On the new Hermite–Hadamard type inequalities for s-convex functions, Afrika Matematika, 32(7-8), 1355-1367, (2021).

Breckner, W. W.Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, Publ. Inst. Math.(Beograd)(NS), 23(37), 13-20 (1978).

Dragomir, S. S., & Fitzpatrick, S. On the new The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Mathematica, 32(4), 687-696. (1999).

Dragomir, S. S. .On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese journal of mathematics, 775-788, (2001).

Kirmaci, U. S., Bakula, M. K., Ozdemir, M. E., & Pecaric, J. Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193(1), 26-35, (2007).

Korus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions, Aequationes mathematicae, 93(3), 527-534, (2019).

Latif, M. A., & Dragomir, S. S. On some new inequalities for differentiable co-ordinated convex functions, Journal of Inequalities and Applications, 2012(1), 1-13, (2012).

Ozcan, S., & Iscan, I. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications, Journal of inequalities and applications, 2019, 1-11. (2019).

Ozdemir, M. E., Latif, M. A., & Akdemir, A. O. On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates, Journal of Inequalities and Applications, 2012, 1-13,(2012).

Ozdemir, M. E., Kavurmaci, H., Akdemir, A. O., & Avci, M. Inequalities for Convex and s-Convex Functions on δ = [a, b] × [c, d], arXiv preprint arXiv:1101.0944, (2011).

Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense, AIMS Math, 6(7), 7719-7732, (2021).

Xi, B. Y., & Qi, F. Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, arXiv preprint arXiv:1406.5409, (2014).

Published
2025-07-13
Section
Research Articles