The parabolic equation with q(x)-triharmonic equation: blow up and growth

  • Gülistan Butakin PHD
  • Erhan Piskin

Abstract

In this work, we investigate the q(x)-triharmonic equation with initial-boundary value conditions on a bounded domain. Firstly, we prove the blow up of solutions. Later, we prove the exponential growth of solutions.

Downloads

Download data is not yet available.

References

G. Akagi, M. Otani, Evolutions inclusions governed by subdifferentials in reflexive Banach spaces, Journal of Evolution Equations, 4 (2004), 519-541.

M. K. Alaoui, S. A. Messaoudi, H. B. Khenous, A blow up result for nonlinear generalized heat equation, Computers & Mathematics with Applications, 68 (2014), 1723-1732.

A. Belakhdar, H. Belaouidel, M. Filali, N. Tsouli, Existence and multiplicity of solutions of p(x)-triharmonic problem, Nonlinear Functional Analysis and Applications, 27 (2) (2022), 349-361.

G. Butakın, E. Piskin, Existence and Blow up of Solutions of a Viscoelastic m(x)-Biharmonic Equation with Logarithmic Source Term, Miskolc Mathematical Notes, Vol. 25 (2024), No. 2, pp. 631–646.

G. Butakın, E. Piskin, Existence and Blow up of Solutions for m(x)-Biharmonic equation with Variable Exponent Sources, Filomat, 38 (22), 7871-7893, 2024.

Butakın, G., Pıskın, E. & Celik, E. Blowup and Global Solutions of a Fourth-Order Parabolic Equation With Variable Exponent Logarithmic Nonlinearity, Journal of Function Spaces, 2024(1), 2847533, (2024).

Y. Chen, S. Levine, M. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM journal on Applied Mathematics, 66(4) (2006), 1383-1406.

H. Di, Y. Shang, X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Applied Mathematics Letters, 64 (2017), 67-73.

L. Diening, P. Hasto, P. Harjulehto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, 2011.

M. Liao, Non-global existence of solutions to pseudo-parabolic equations with variable exponents and positive initial energy, Comptes Rendus Mecanique, 347 (2019), 710-715.

Y. Liu, Existence and blow-up of solutions to a parabolic equation with nonstandard growth conditions, Bulletin of the Australian Mathematical Society, 99 (2) (2019), 242-249.

E. Piskin, G. Butakın, Existence and decay of solutions for a parabolic-type Kirchhoff equation with variable exponents, Journal of Mathematical Sciences and Modelling, 6 (1) (2023), 32-41.

E. Piskin, G. Butakın, Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent, Mathematica Moravica, 27(2) (2023), 25-32.

E. Piskin, B. Okutmustur, An Introduction to Sobolev Spaces, Bentham Science, 2021.

A. Rahmoune, Bounds for blow-up time in a nonlinear generalized heat equation, Applicable Analysis, 101(6) (2022), 1871-1879.

K. R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, 13 (2001), 59-78.

M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1748 (2000).

N. Yılmaz, S. M. Gozen, E. Piskin, B. Okutmustur, A blow up of solutions for a system of Klein-Gordon equations with variable exponent: Theoretical and Numerical Results, Mathematica Applicanda, 51(1) (2023), 143-164.

N. Yılmaz, E. Piskin, E. Celik, Well-Posedness and Blow-Up of Solutions for a Variable Exponent Nonlinear Petrovsky Equation, Advances in Mathematical Physics, Volume 2023, Article ID 8866861, 1-13.

X. Zhu, B. Guo, M. Liao, Global existence and blow-up of weak solutions for a pseudo-parabolic equation with high initial energy, Applied Mathematics Letters, 104 (2020), 106-270.

Butakın, G., Pıskın, E. & Celik, E., Blowup and Global Solutions of a Fourth-Order Parabolic Equation With Variable Exponent Logarithmic Nonlinearity, Journal of Function Spaces, 2024(1), 2847533, (2024).

Published
2025-08-24
Section
Research Articles