Almost Ricci-Yamabe solitons in f-Kenmotsu manifolds

  • G. S. Shivaprasanna Dr. Ambedkar Institute of Technology
  • R. Rajendra Mangalore University
  • P. Siva Kota Reddy JSS Science and Technology University http://orcid.org/0000-0003-4033-8148
  • G. Somashekhara M. S. Ramaiah University of Applied Sciences
  • M. Pavithra Karnataka State Open University

Abstract

The purpose of this paper is to charecterize f -Kenmotsu manifolds admitting almost Ricci-Yamabe soliton and gradient Ricci-Yamabe soliton. We deduce the ncessary condition for the potential function u is constant. Further, a relation between λ and the potential function u has been established. Finally, a sufficient condition is proved for a Ricci-Yamabe soliton to be a gradient Ricci-Yamabe soliton and a characterization of the soliton in terms of shrinking, steady or expanding has been done.

Downloads

Download data is not yet available.

Author Biography

P. Siva Kota Reddy, JSS Science and Technology University

Professor, Departmnet of Mathematics, JSS Science and Technology, Mysuru-570 006, India

References

Angadi, P. G., Shivaprasanna, G. S. and Somashekhara, G., η-Ricci-solitons in α-para Kenmotsu manifolds, Journal of Physics: Conference Series, 1597(1), 012032, (2020).

Angadi, P. G., Shivaprasanna, G. S., Somashekhara, G. and Siva Kota Reddy, P., Ricci-Yamabe solitons on submanifolds of some indefinite almost contact manifolds, Adv. Math., Sci. J., 9(11), 10067–10080, (2020).

Angadi, P. G., Shivaprasanna, G. S., Somashekhara, G. and Siva Kota Reddy, P., Ricci Solitons on (LCS)-Manifolds under D-Homothetic Deformation, Italian Journal of Pure & Applied Mathematics, 46, 672-683, (2021).

Angadi, P. G., Siva Kota Reddy, P., Shivaprasanna, G. S., and Somashekhara, G., On Weakly Symmetric Generalized (k, µ)-Space Forms, Proc. Jangjeon Math. Soc., 25(2), 133-144, (2022).

Guler, S. and Crasmareanu, M., Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turkish J. Math., 43(5), 2631–2641, (2019).

Hamilton, R. S., The Ricci flow on surfaces, Contemp. Math., 71, 237-261, (1988).

Janssens, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J., 4, 1–27, (1981).

Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J. (2), 24, 93–103, (1972).

Maralabhavi, Y. B. , Shivaprasanna, G. S. and Somashekara, G., On 3-dimensional (ϵ, δ)-trans-Sasakian structure, Int. J. Pure Appl. Math., 87(3), 405-413, (2013).

Nagaraja, H. G. and Premalatha, C. R., Ricci solitons in f-Kenmotsu manifolds and 3-dimensional trans-Sasakian manifolds, Prog. Appl. Math., 3, 1—6, (2012).

Nagaraja, H. G., Dipansha Kumari and Siva Kota Reddy, P., Submanifolds of (k, µ)- Contact Metric Manifold as Ricci Solitons, Proc. Jangjeon Math. Soc., 24(1), 11-19, (2021).

Naveen Kumar, R. T., Siva Kota Reddy, P., Venkatesha and Sangeetha, M., Certain Results on (k, µ)-Contact Metric Manifold endowed with Concircular Curvature Tensor, Commun. Math. Appl., 14(1), 215-225, (2023).

Olszak, Z. and Rosco, R., Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(3 & 4), 315–323, (1991).

Pitis, G., A remark on Kenmotsu manifolds, Bul. Univ. Bra¸sov Ser. C, 30, 31-–32, (1988).

Shivaprasanna, G. S., Samiul Haque, Md., Shashidhar, S. and Somashekhara, G., η-Ricci Yamabe soliton on LP - Sasakian manifolds, J. Math. Comput. Sci., 11, 6242–6255, (2021).

Shivaprasanna, G. S., Samiul Haque, Md. and Somashekhara, G., η-Ricci soliton on f-Kenmotsu manifolds, Journal of Physics: Conference Series, 1543(1) (2020), 012007.

Siddiqi, M. D. and Akyol, M. A., η-Ricci-Yamabe solitons on Riemannian submersions from Riemannian manifolds, arXiv preprint arXiv:2004.14124, (2020).

Somashekhara, G., Girish Babu, S., and Siva Kota Reddy, P., Indefinite Sasakian Manifold with Quarter-Symmetric Metric Connection, Proc. Jangjeon Math. Soc., 24(1), 91-98, (2021).

Somashekhara, G., Girish Babu, S. and Siva Kota Reddy, P., Conformal Ricci Soliton in an Indefinite Trans-Sasakian manifold, Vladikavkaz Math. J, 23(3), 43-49, (2021).

Somashekhara, G., Girish Babu, S. and Siva Kota Reddy, P., Ricci Solitons and Generalized Weak Symmetries under D-Homothetically Deformed LP -Sasakian Manifolds, Italian Journal of Pure & Applied Mathematics, 46, 684-695, (2021).

Somashekhara, G., Girish Babu, S. and Siva Kota Reddy, P., Conformal η-Ricci Solitons in Lorentzian Para-Sasakian Manifold Admitting Semi-Symmetric Metric Connection, Italian Journal of Pure & Applied Mathematics, 46, 1008-1019, (2021).

Somashekhara, G., Siva Kota Reddy, P., Shivashankara, K. and Pavani, N., Slant Sub-manifolds of Generalized Sasakian-Space-Forms, Proc. Jangjeon Math. Soc., 25(1), 83-88, (2022).

Somashekhara, G., Girish Babu, S., Siva Kota Reddy, P. and Shivashankara, K., On LP-Sasakian Manifolds admitting Generalized Symmetric Metric Connection, Proc. Jangjeon Math. Soc., 25(3), 287-296, (2022).

Somashekhara, G., Girish Babu, S. and Siva Kota Reddy, P., η-Ricci soliton in an indefinite trans-Sasakian manifold admitting semi-symmetric metric connection, Bol. Soc. Parana. Mat. (3), 41, 1-9, (2023).

Somashekhara, G., Rajendra, R., Shivaprasanna, G. S. and Siva Kota Reddy, P., Pseudo Parallel and Generalized Ricci Pseudo Parallel Invariant Submanifolds of a Generalized Sasakian Space Form, Proc. Jangjeon Math. Soc., 26(1), 69-78, (2023).

Somashekhara, P., Naveen Kumar, R. T., Siva Kota Reddy, P., Venkatesha and Alloush, K. A. A., Pseudo Projective Curvature Tensor on Generalized Sasakian Space Forms, Proc. Jangjeon Math. Soc., 26(3), 243-251, (2023).

Published
2025-01-21
Section
Research Articles