Mathematical analysis of extended Fisher-Kolmogorov equation with Neumann boundary conditions
Mathematical analysis of extended Fisher-Kolmogorov equation
Resumo
We investigate the extended Fisher-Kolmogorov equation (EFK) under Neumann boundary conditions in a spatial dimension of up to three ($d\leq 3$). This is done on a bounded convex domain with a boundary that possesses $C^{2}$ smoothness. The EFK equation, which is a fourth-order PDE, is reduced into a system of two second-order PDEs. We prove the global existence, uniqueness, and continuous dependence on initial conditions for both strong and weak solutions using Lions' classic Faedo-Galerkin approach and compactness arguments. Furthermore, we provide results on the regularity of weak forms.
Downloads
Referências
A. Abbassi, C. Allalou, and A. Kassidi. Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted sobolev space. Bol. Soc. Parana. Mat., 40, 1–22, (2022).
G. Ahlers and D. S. Cannell. Vortex-front propagation in rotating couette-taylor flow. Phys. Rev. Lett., 50(20), 1583, (1983).
A. Ahmed, B. Jaouad, and M. Elmassoudi. Existence and uniqueness of renormalized solution for nonlinear parabolic equations in musielak orlicz spaces. Bol. Soc. Parana. Mat., 40, 1–22, (2022).
G. A. Al-Juaifri and A. J. Harfash. Analysis of a nonlinear reaction-diffusion system of the fitzhugh-nagumo type with robin boundary conditions. Ric. Math., 72(1), 335–357, (2023).
G. A. Al-Musawi and A. J. Harfash. Analysis of a coupled pair of Cahn-Hilliard equations with nondegenerate mobility. J. Math. Model., 12(1), 51–70, (2024).
G. A. Al-Musawi and A. J. Harfash. Global existence of a pair of coupled Cahn-Hilliard equations with nondegenerate mobility and logarithmic potential. Gulf J. Math., 16(1), 9–35, (2024).
D. Alaeddine. Global existence and general decay of Moore–Gibson–Thompson equation with not necessarily decreasing kernel. Bol. Soc. Parana. Mat., 41, 1–15, (2023).
B. Amel and N. Tabouche. Existence of positive solutions of hadamard fractional defferential equations with integral boundary conditions. Bol. Soc. Parana. Mat., 40, 1–14, (2022).
E. Arhrrabi, M. Elomari, S. Melliani, and L. S. Chadli. Existence and controllability results for fuzzy neutral stochastic differential equations with impulses. Bol. Soc. Parana. Mat., 41, 1–14, (2023).
M. Benzahi, A. Zara¨ı, S. Boulaaras, R. Jan, and M. Iqbal. Blow up and lifespan of solutions for elastic membrane equation with delay. Results Appl. Math., 21, 100426, (2024).
H. Brezis and H. Brezis. Functional analysis, Sobolev spaces and partial differential equations, volume 2. Springer, (2011).
T. Cazenave. Semilinear Schrodinger Equations, volume 10. American Mathematical Soc., (2003).
A. Charkaoui, G. Kouadri, and N. E. Alaa. Some results on the existence of weak periodic solutions for quasilinear parabolic systems with l1 data. Bol. Soc. Parana. Mat., 40, 1–15, (2022).
A. Choucha, S. Boulaaras, and R. Jan. On a Lord–Shulman swelling porous thermo-elastic soils system with microtemperature effect, well-posedness and stability results. Afrika Math., 35(1), 30, (2024).
A. Choucha, S. Boulaaras, R. Jan, and R. Alharbi. Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents. Math. Methods Appl. Sci., 47, 6928–6945, (2024).
A. Choucha, S. M. Boulaaras, and R. Jan. Stability result for Lord Shulman swelling porous thermo-elastic soils with distributed delay term. Open Math., 21(1), 20230165, (2023).
P. G. Ciarlet. The finite element method for elliptic problems. SIAM, (2002).
P. Coullet, C. Elphick, and D. Repaux. Nature of spatial chaos. Phys. Rev. Lett., 58(5), 431, (1987).
P. Danumjaya and A. K. Pani. Numerical methods for the extended Fisher-Kolmogorov (EFK) equation. Int. J. Numer. Anal. Model., 3(2), 186–210, (2006).
R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2 Functional and Variational Methods, volume 2. Springer Science & Business Media, (1999).
G. Dee and W. van Saarloos. Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett., 60(25), 2641, (1988).
S. Dob, H. Lekhal, and M. Maouni. Existence of solutions for a p-Laplacian system with a nonresonance condition between the first and the second eigenvalues. Bol. Soc. Parana. Mat., 40, 1–8, (2022).
A. El Mahraoui et al. Existence and multiplicity of solutions for anisotropic elliptic equation. Bol. Soc. Parana. Mat., 40, 1–12, (2022).
M. Elomari, M. Chaib, and S. Melliani. On the existence of almost automorphic generalized solutions to some generalized differential equations. Bol. Soc. Parana. Mat., 41, 1–12, (2023).
I. E. Eskandarkolaei, S. Khademloo, and G. Afrouzi. Existence of weak solutions for second-order boundary-value problems of Kirchhoff-type with variable exponents. Bol. Soc. Parana. Mat., 40, 1–12, (2022).
A. Ghazvehi and G. A. Afrouzi. Existence results for perturbed fourth-order Kirchhoff type elliptic problems with singular term. Bol. Soc. Parana. Mat., 40, 1–15, (2022).
M. Haddaoui, H. Lebrimchi, and N. Tsouli. Study to the resonance of p-Laplacian problem with mixed boundary. Bol. Soc. Parana. Mat., 41, 1–9, (2023).
P. Hartman. Ordinary Differential Equations. John Wiley & Sons, (1973).
N. Irkıl, K. Mahdi, E. Pi¸skin, M. Alnegga, and S. Boulaaras. On a logarithmic wave equation with nonlinear dynamical boundary conditions, local existence and blow-up. J. Inequal. Appl., 2023(1), 159, (2023).
T. Kadri and K. Omrani. A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation. Comput. Math. with Appl., 61(2), 451–459, (2011).
T. Kadri and K. Omrani. A fourth-order accurate finite difference scheme for the extended-Fisher-Kolmogorov equation. Bull. Korean Math. Soc., 55(1), 297–310, (2018).
N. Khiari and K. Omrani. Finite difference discretization of the extended Fisher–Kolmogorov equation in two dimensions. Comput. Math. with Appl., 62(11), 4151–4160, (2011).
J. Kwapisz. Uniqueness of the stationary wave for the extended Fisher–Kolmogorov equation. J. Differential Equations, 165(1), 235–253, (2000).
S. Lecheheb, H. Lakhal, and M. Maouni. Existence of solutions for quasilinear problem with Neumann boundary conditions. Bol. Soc. Parana. Mat., 40, 1–8, (2022).
C. Li. Homoclinic orbits of two classes of fourth order semilinear differential equations with periodic nonlinearity. J. Appl. Math. Comput., 27(1-2), 107–116, (2008).
J. L. Lions. Quelques methodes de resolution des problemes aux limites non lineaires. (1969).
M. Maizi, S. Boulaaras, A. Mansour, and M. Haiour. Existence of positive solutions of kirchhoff hyperbolic systems with multiple parameters. Bol. Soc. Parana. Mat., 40, 1–11, (2022).
A. Matallah, S. Litimein, and S. Messirdi. Existence of multiple solutions for a nonhomogeneous p-Laplacian elliptic equation with critical sobolev-hardy exponent. Bol. Soc. Parana. Mat., 40, 1–12, (2022).
L. A. Peletier and W. C. Troy. Chaotic spatial patterns described by the extended Fisher–Kolmogorov equation. J. Differential Equations, 129(2), 458–508, (1996).
L. A. Peletier, W. C. Troy, and R. Van der Vorst. Stationary solutions of a fourth order nonlinear diffusion equation. Differential Equations, 31(2), 301–314, (1995).
J. C. Robinson. Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics. Cambridge University Press., (2001).
J. C. Robinson. Infinite-dimensional dynamical systems, an introduction to dissipative parabolic PDEs and the theory of global attractors, volume 28. Cambridge University Press, (2001).
Z. Rouhani and G. A. Afrouzi. The existence of one solution for impulsive differential equations via variational methods. Bol. Soc. Parana. Mat., 41, 1–11, (2023).
D. P. D. Santos. Existence results for nonlinear problems with φ-Laplacian operators and nonlocal boundary conditions. Bol. Soc. Parana. Mat., 40, 1–10, (2022).
D. Smets and J. B. van den Berg. Homoclinic solutions for Swift–Hohenberg and suspension bridge type equations. J. Differential Equations, 184(1), 78–96, (2002).
F. Souileh, M. Maouni, and K. Slimani. The existence of renormalized solution for quasilinear parabolic problem with variable exponents and measure data. Bol. Soc. Parana. Mat., 41, 1–27, (2023).
R. Temam. Navier-Stokes equations, theory and numerical analysis, volume 343. American Mathematical Soc., (2001).
R. Temam. Infinite-dimensional dynamical systems in mechanics and physics, volume 68. Springer Science & Business Media, (2012).
S. Tersian and J. Chaparova. Periodic and homoclinic solutions of extended Fisher–Kolmogorov equations. J. Math. Anal. Appl., 260(2), 490–506, (2001).
J. B. van den Berg. Uniqueness of solutions for the extended Fisher–Kolmogorov equation. Comptes Rendus de l’Academie des Sciences-Series I-Mathematics, 326(4), 447–452, (1998).
W. Van Saarloos. Dynamical velocity selection, marginal stability. Phys. Rev. Lett., 58(24), 2571, (1987).
W. Van Saarloos. Front propagation into unstable states, marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A, 37(1), 211, (1988).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).