(– 1, 1) ring of degree five satisfying the identity (x, yz, w) = y(x, z, w).
Abstract
In this paper we describe (– 1, 1) ring of degree-5. We derive the condition for associativity of a third power associative (– 1, 1) ring of degree five satisfying the identity (x, yz, w) = y(x, z, w). The ring is also associative even when we induce the condition of the semiprimeness.
Downloads
References
Anderson, C. T.,Outcalt, D. L. (1968). On simple antiflexible rings. J. Algebra 10:310– 320.
Celik, H. A.(1971). Commutative associative rings and antiflexible rings. Pacific J. Math.38:351–358.
Celik, H. A. (1972). On primitive and Prime antiflexible rings. J. Algebra 20:428–440.
Jacobs, D. P., Muddana, S. V., Offutt, A. J., Prabhu, K. (0000). Albert 1.0 User’s Guide, Department of Computer Science, Clemson University.
Kleinfeld, E. (1955). Primitive alternative rings and semi-simplicity. Amr. J. Math.77:725- 730.
Kosier, F. (1962). On a class of nonflexible algebras. Trans. Amer. Math. Soc. 102:299– 318.
Rodabaugh, D. (1965). A generalization of flexible law. Trans. Amer. Math. Soc.114:468– 487.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



