(– 1, 1) ring of degree five satisfying the identity (x, yz, w) = y(x, z, w).

  • K. Hari Babu JNTUA college of engineering (autonomous)AnathapuramuAndhra pradesh (India)
  • K. Jaya Lalshmi
  • P. Sarada Devi
  • C. Manjula

Abstract

In this paper we describe (– 1, 1) ring of degree-5. We derive the condition for associativity of a third power associative (– 1, 1) ring of degree five satisfying the identity (x, yz, w) = y(x, z, w). The ring is also associative even when we induce the condition of the semiprimeness.

Downloads

Download data is not yet available.

Author Biography

K. Hari Babu, JNTUA college of engineering (autonomous)AnathapuramuAndhra pradesh (India)

Mathematics

References

Anderson, C. T.,Outcalt, D. L. (1968). On simple antiflexible rings. J. Algebra 10:310– 320.

Celik, H. A.(1971). Commutative associative rings and antiflexible rings. Pacific J. Math.38:351–358.

Celik, H. A. (1972). On primitive and Prime antiflexible rings. J. Algebra 20:428–440.

Jacobs, D. P., Muddana, S. V., Offutt, A. J., Prabhu, K. (0000). Albert 1.0 User’s Guide, Department of Computer Science, Clemson University.

Kleinfeld, E. (1955). Primitive alternative rings and semi-simplicity. Amr. J. Math.77:725- 730.

Kosier, F. (1962). On a class of nonflexible algebras. Trans. Amer. Math. Soc. 102:299– 318.

Rodabaugh, D. (1965). A generalization of flexible law. Trans. Amer. Math. Soc.114:468– 487.

Published
2025-08-10
Section
Research Articles