Enriched type contractions in convex generalized super metric spaces
Abstract
In this paper, we present the concept of a generalized super metric space. We then define a generalized enriched contraction within the framework of a convex generalized super metric space and propose several fixed point theorems for this new type of contraction. Additionally, we extend the Dass and Gupta rational contraction in the context of our newly introduced space. To illustrate our findings, we include examples. Finally, we apply our results to solve a fractional differential equation.
Downloads
References
Abdeljawad, T. & Baleanu, D. (2017) Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl. 10, 1098–1107.
Agarwal, R. P., O’Regan, D., & Sahu, D. R. (2009). Fixed point theory for Lipschitzian-type mappings with application. In Topological Fixed Point Theory and Its Applications (p. 6). Springer.
Atangana, A. & Baleanu, D. (2016). New fractional derivative with non-local and non-singular kernal, Thermal Sci. 20(2), 757–763.
Bakhtin, I.A. (1989). The contraction mapping principle in almost metric spaces. Functional Analysis, 30, 26–37.
Banach, S. (1922). Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales. Fundamenta Mathematicae, 3, 133–181.
Berinde, V., & Pacurar, M. (2020). Approximating fixed points of enriched contractions in Banach spaces. Journal of Fixed Point Theory and Applications, 22, 1–10.
Berinde, V., & Pacurar, M. (2021). Existence and Approximation of Fixed Points of Enriched Contractions and Enriched ϕ-Contractions. Symmetry, 13, 498.
Berinde, V. (2019). Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces. Carpathian Journal of Mathematics, 35, 293–304.
Branciari, A. (2000). A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae, 57(1–2), 31-–37.
Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1, 5–11.
Dass, B. K., & Gupta, S. (1975). An extension of Banach contraction principle through rational expressions. Indian Journal of Pure and Applied Mathematics, 6, 1455-1458.
Frechet, M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22(1), 1–72.
Gangwar, A., Rawat, S., & Dimri, R.C. (2023). Solution of differential inclusion problem in controlled S-metric spaces via new multivalued fixed point theorem. Journal of Analysis, 31, 2459–2472.
Gangwar, A., Rawat, S., Isik, H., & Dimri, R.C. (2024). Enriched multivalued contractions on double controlled metric type spaces with an application. Adv. Fixed Point Theory, 14.
Jleli, M., & Samet, B. (2015). A generalized metric space and related fixed point theorems. Fixed Point Theory and Applications, 2015, 61.
Kamran, T., Samreen, M., & UL Ain, Q. (2017). A Generalization of b-metric space and some fixed point theorems. Mathematics, 5, 1–7.
Karapınar, E., & Khojasteh, F. (2022). Super Metric Spaces. Filomat, 36(10), 3545–3549.
Karapinar, E., & Fulga, A. (2022). Contraction in Rational Forms in the Framework of Super Metric Spaces. Mathematics, 10, 3077.
Kilbas, A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and application of fractional differential equations, North Holland Math. Stud.
Matthews, S.G. (1994). Partial metric topology. Annals of the New York Academy of Sciences-Paper Edition, 728, 183–197.
Rawat, S., Dimri, R.C. & Bartwal, A. (2022). F-Bipolar metric spaces and fixed point theorems with applications. Journal of Mathematical and Computational Science, 26(2), 184-195.
Rawat, S., Kukreti, S. & Dimri, R.C. (2022). Fixed point results for enriched ordered contractions in noncommutative Banach spaces. J. Anal. 30, 1555–1566.
Rawat, S., Bartwal, A. & Dimri, R.C. (2023). Approximation and existence of fixed points via interpolative enriched contractions. Filomat, 37(16), 5455–5467.
Rus, I.A. (1979). Principles and applications of the Fixed Point Theory; Editura Dacia: Cluj-Napoca, Romania.
Rus, I.A. (1991). Basic problems of the metric fixed point theory revisited (II). Studia Universitatis Babe¸s-Bolyai Mathematica , 36, 81–99.
Samko, S. G., Kilbas, A. A. & Marichev, O. (1993). Fractional integrals and derivatives: theory and applications, Yverdon: Gordon and Breach.
Takahashi, W. (1970). A convexity in metric space and nonexpansive mappings, I. Kodai Mathematical Seminar Reports, 22(2), 142–149.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



