Taekyun Kim $\alpha$-Index of Graphs
Resumen
In this study, we introduce the Taekyun Kim $\alpha$-index, a novel topological index for graphs, where $\alpha\in \mathbb{R}$, which involves stresses and degrees of nodes. We calculate this index for a few common graphs and prove a few results. Further, a QSPR analysis is carried for Taekyun Kim $2$-index and physical properties of lower alkanes and linear regression models have been provided.
Descargas
La descarga de datos todavía no está disponible.
Citas
\bibitem{bdr} K. Bhargava, N. N. Dattatreya and R. Rajendra, On stress of a vertex in a graph, \emph{Palest. J. Math.}, 12(3) (2023), 15–25.
\bibitem{gut1} I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\phi$-electron energy of alternant hydrocarbons, \emph{Chemical Physics Letters}, 17(4) (1972), 535-538.
\bibitem{gut2} I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, \emph{J. Chem. Phys.}, 62(9) (1975), 3399–3405.
\bibitem{gut4} I. Gutman and K. C. Das, The first Zagreb index 30 years after, \emph{MATCH Commun. Math. Comput. Chem.}, 50 (2004), 83-92.
\bibitem{hara} F. Harary, \emph{Graph Theory}, Addison Wesley, Reading, Mass, 1972.
\bibitem{harsha} C. N. Harshavardhana, R. Rajendra, P. S. K. Reddy and Khaled A. A. Alloush, A QSPR Analysis for Stress-Sum Index, \emph{International J. Math. Combin.}, 4 (2022), 60-65.
\bibitem{indu2} M. Indhumathy, S. Arumugam, V. Baths and T. Singh, Graph theoretic concepts in the study of biological networks, \emph{Springer Proc. Math. Stat.}, 186 (2016), 187-200.
\bibitem{Needham} D. E. Needham, I. C. Wei and P. G. Seybold, Molecular modeling of the physical properties of alkanes, \emph{Journal of the American Chemical Society}, 110(13) (1988), 4186–4194.
\bibitem{Raksha1} R. Poojary, K. Arathi Bhat, S. Arumugam and K. Manjunatha Prasad, The stress of a graph, \emph{Commun. Comb. Optim.}, 8(1) (2023), 53-65.
\bibitem{Raksha2} R. Poojary, K. Arathi Bhat, S. Arumugam and K. Manjunatha Prasad, Stress of a graph and its computation, \emph{AKCE Int. J. Graphs Comb.}, 20(2) (2023), 200-208.
\bibitem{Raj-StressSum} R. Rajendra, P. S. K. Reddy and C. N. Harshavardhana, Stress-Sum Index for Graphs, \emph{Sci. Magna}, 15(1) (2020), 94-103.
\bibitem{Raj-QSPR-T-S} R. Rajendra, P. Siva Kota Reddy, I. N. Cangul and H. M. Gowramma, Total Stress as a Topological Index, Submitted for publication.
\bibitem{Shannon} P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, \emph{Genome Research}, 13(11) (2003), 2498–2504.
\bibitem{Shimbel} A. Shimbel, Structural Parameters of Communication Networks, \emph{Bulletin of Mathematical Biophysics}, 15 (1953), 501-507.
\bibitem{Wiener} H. Wiener, Structural determination of paraffin boiling points,
\emph{J. Amer. Chem. Soc.}, 69(1) (1947), 17-20.
\bibitem{HI} K. Xu, K. C. Das and N. Trinajstic, \emph{The Harary Index of a Graph}, Heidelberg, Springer, 2015.
\bibitem{Zhou} B. Zhou, Zagreb indices, \emph{MATCH Commun. Math. Comput. Chem.}, 52 (2004) 113–118.
\bibitem{gut1} I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\phi$-electron energy of alternant hydrocarbons, \emph{Chemical Physics Letters}, 17(4) (1972), 535-538.
\bibitem{gut2} I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, \emph{J. Chem. Phys.}, 62(9) (1975), 3399–3405.
\bibitem{gut4} I. Gutman and K. C. Das, The first Zagreb index 30 years after, \emph{MATCH Commun. Math. Comput. Chem.}, 50 (2004), 83-92.
\bibitem{hara} F. Harary, \emph{Graph Theory}, Addison Wesley, Reading, Mass, 1972.
\bibitem{harsha} C. N. Harshavardhana, R. Rajendra, P. S. K. Reddy and Khaled A. A. Alloush, A QSPR Analysis for Stress-Sum Index, \emph{International J. Math. Combin.}, 4 (2022), 60-65.
\bibitem{indu2} M. Indhumathy, S. Arumugam, V. Baths and T. Singh, Graph theoretic concepts in the study of biological networks, \emph{Springer Proc. Math. Stat.}, 186 (2016), 187-200.
\bibitem{Needham} D. E. Needham, I. C. Wei and P. G. Seybold, Molecular modeling of the physical properties of alkanes, \emph{Journal of the American Chemical Society}, 110(13) (1988), 4186–4194.
\bibitem{Raksha1} R. Poojary, K. Arathi Bhat, S. Arumugam and K. Manjunatha Prasad, The stress of a graph, \emph{Commun. Comb. Optim.}, 8(1) (2023), 53-65.
\bibitem{Raksha2} R. Poojary, K. Arathi Bhat, S. Arumugam and K. Manjunatha Prasad, Stress of a graph and its computation, \emph{AKCE Int. J. Graphs Comb.}, 20(2) (2023), 200-208.
\bibitem{Raj-StressSum} R. Rajendra, P. S. K. Reddy and C. N. Harshavardhana, Stress-Sum Index for Graphs, \emph{Sci. Magna}, 15(1) (2020), 94-103.
\bibitem{Raj-QSPR-T-S} R. Rajendra, P. Siva Kota Reddy, I. N. Cangul and H. M. Gowramma, Total Stress as a Topological Index, Submitted for publication.
\bibitem{Shannon} P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, \emph{Genome Research}, 13(11) (2003), 2498–2504.
\bibitem{Shimbel} A. Shimbel, Structural Parameters of Communication Networks, \emph{Bulletin of Mathematical Biophysics}, 15 (1953), 501-507.
\bibitem{Wiener} H. Wiener, Structural determination of paraffin boiling points,
\emph{J. Amer. Chem. Soc.}, 69(1) (1947), 17-20.
\bibitem{HI} K. Xu, K. C. Das and N. Trinajstic, \emph{The Harary Index of a Graph}, Heidelberg, Springer, 2015.
\bibitem{Zhou} B. Zhou, Zagreb indices, \emph{MATCH Commun. Math. Comput. Chem.}, 52 (2004) 113–118.
Publicado
2025-01-21
Número
Sección
Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).