<b>Spin-structures and 2-fold coverings</b> - doi: 10.5269/bspm.v23i1-2.7451
Résumé
We prove that the existence of a Spin-structure on an oriented real vector bundle and the number of them can be obtained in terms of 2-fold coverings of the total space of the SO(n)-principal bundle associated to the vector bundle. Basically we use theory of covering spaces. We give a few elementary applications making clear that the Spin-bundle associated to a Spin-structure is not suffcient to classify such structure, as pointed out by [6].Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).