<b>Spin-structures and 2-fold coverings</b> - doi: 10.5269/bspm.v23i1-2.7451

  • Daciberg L. Gonçalves USP
  • Claude Hayat Laboratoire Emile Picard, UMR 5580 Université Toulouse III
  • Maria Hermínia P. L. Mello UERJ

Résumé

We prove that the existence of a Spin-structure on an oriented real vector bundle and the number of them can be obtained in terms of 2-fold coverings of the total space of the SO(n)-principal bundle associated to the vector bundle. Basically we use theory of covering spaces. We give a few elementary applications making clear that the Spin-bundle associated to a Spin-structure is not suffcient to classify such structure, as pointed out by [6].

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Rubrique
Articles