Cross ratio geometry: advances for multiple collinear points in the desargues affine plane
Abstract
This paper introduces advances in the geometry of the cross ratio of multiple collinear points of a skew field in the Desargues affine plane. This paper extends earlier results for three collinear points in terms of the geometry resulting from four co-linear points in the Desargues affine plane. The results given here have a clean rendition, based on Desargues affine plane axiomatics, skew field properties and the addition and multiplication of planar collinear points.
Downloads
References
Artin, E. Geometric algebra. Interscience Publishers, New York, NY,1957
Berger, M. Geometry revealed. (Springer,2010), xvi+831 pp., ISBN: 978-3-540-70996-1, MR2724440
Berger, M. Geometry. I, II. Translated from the French by M. Cole and S. Levy. Berlin: Springer, 2009.
Coxeter, H. Introduction to geometry, 2nd Edition. (John Wiley & Sons, Inc.,1969), xvii+469 pp., MR0123930, MR0346644
Filipi, K., Zaka, O. & Jusufi, A. The construction of a corp in the set of points in a line of Desargues affine plane. Matematicki Bilten. 43, 1-23 (2019), ISSN 0351-336X (print), ISSN 1857–9914 (online)
Hartshorne, R. Foundations of projective geometry. (New York: W.A. Benjamin, Inc. 1967. VII, 167 p. (1967).,1967)
Hilbert, D. The foundations of geometry. (The Open Court Publishing Co.,1959), vii+143 pp., MR0116216
Hughes, D. & Piper, F. Projective Planes. Graduate Texts in Mathematics, Vol. 6. (Spnnger-Verlag,1973), x+291 pp., MR0333959
Kryftis, A. A constructive approach to affine and projective planes. (University of Cambridge,2015), supervisor: M. Hyland, v+170pp.,arXiv 1601.04998v1 19 Jan. 2016
Pickert, G. Affine Planes: An Example of Research on Geometric Structures. The Mathematical Gazette. 57, 278-291 (2004), MR0474017
Prazmowska, M. A proof of the projective Desargues axiom in the Desarguesian affine plane. Demonstratio Mathematica. 37, 921-924 (2004), MR2103894
Szmielew, W. Od geometrii afinicznej do euklidesowej (Polish) [From affine geometry to Euclidean geometry] Rozwaania nad aksjomatyk [An approach through axiomatics]. (Biblioteka Matematyczna [Mathematics Library], 1981), 172 pp., ISBN: 83-01-01374-5, MR0664205
Zaka, O. Contribution to Reports of Some Algebraic Structures with Affine Plane Geometry and Applications. (Polytechnic University of Tirana,Tirana, Albania,2016), supervisor: K. Filipi, vii+113pp.
Zaka, O. A description of collineations-groups of an affine plane. Libertas Mathematica (N.S.). 37, 81-96 (2017), ISSN print: 0278 – 5307, ISSN online: 2182 – 567X, MR3828328
Zaka, O. Three Vertex and Parallelograms in the Affine Plane: Similarity and Addition Abelian Groups of Similarly n-Vertexes in the Desargues Affine Plane. Mathematical Modelling And Applications. 3, 9-15 (2018), http://doi:10.11648/j.mma.20180301.12
Zaka, O. Dilations of line in itself as the automorphism of the skew-field constructed over in the same line in Desargues affine plane. Applied Mathematical Sciences. 13, 231-237 (2019). https://www.m-hikari.com/ams/ams-2019/ams-5-8-2019/p/zakaAMS5-8-2019.pdf
Zaka, O. & Filipi, K. The transform of a line of Desargues affine plane in an additive group of its points. Int. J. Of Current Research. 8, 34983-34990 (2016). https://www.journalcra.com/sites/default/files/issue-pdf/16349.pdf
Zaka, O., Peters, J.F. DYCK FREE GROUP PRESENTATION OF POLYGON CYCLES IN THE RATIO OF COLLINEAR POINTS IN THE DESARGUES AFFINE PLANE. J Math Sci 280, 605–630 (2024). https://doi.org/10.1007/s10958-024-06995-4
Orgest Zaka and James Peters. Progress in Invariant and Preserving Transforms for the Ratio of Collinear Points in the Desargues Affine Plane Skew Field. Bol. Soc. Paran. Mat. (3s.) v. 2025 (43): 1-21. https://doi.org/10.5269/bspm.68800
Zaka, Orgest; Peters, James F. Invariant and preserving transforms for cross ratio of 4-points in a line on Desargues affine plane. Journal of Prime Research in Mathematics. 20, No. 2, 48-63 (2024). Zbl 07943368 https://jprm.sms.edu.pk/invariant-and-preserving-transforms-for-cross-ratio-of-4-points-in-a-lineon-desargues-affine-plane/
Peters, J.F., Zaka, O. Dyck fundamental group on arcwise-connected polygon cycles. Afr. Mat. 34, 31 (2023). https://doi.org/10.1007/s13370-023-01067-3
Zaka, O. & Mohammed, M. The endomorphisms algebra of translations group and associative unitary ring of tracepreserving endomorphisms in affine plane. Proyecciones. 39, 821-834 (2020). https://doi.org/10.22199/issn.0717-6279-2020-04-0051
Zaka, O. & Mohammed, M. Skew-field of trace-preserving endomorphisms, of translation group in affine plane. Proyecciones.
, 835-850 (2020). https://doi.org/10.22199/issn.0717-6279-2020-04-0052
Zaka, O. & Peters, J. Isomorphic-dilations of the skew-fields constructed over parallel lines in the Desargues affine plane. Balkan J. Geom. Appl.. 25, 141-157 (2020), https://www.emis.de/journals/BJGA/v25n1/B25-1zk-ZBG89.pdf
Zaka, O. & Peters, J. Ordered line and skew-fields in the Desargues affine plane. Balkan J. Geom. Appl.. 26, 141-156 (2021), https://www.emis.de/journals/BJGA/v26n1/B26-1zb-ZBP43.pdf
Cohn, P. Skew fields. Theory of general division rings. Encycl. Math. Appl. ISSN: 0953-4806, Volume 57. Cambridge: Cambridge University Press (2008; Zbl 1144.16002)
Herstein, I. Topics in algebra, 2nd Ed. (Xerox College Publishing,1975), pp. xi+388, MR0356988; first edition in 1964, MR0171801.
Rotman, J. Advanced modern algebra. Part 1. Providence, RI: American Mathematical Society (AMS), 2015.
Lam, T. A first course in noncommutative rings. Graduate Texts in Mathematics, Vol.131. New York, NY: Springer, (2001; Zbl 0980.16001).
Milne, J. An elementary treatise on cross-ratio geometry, with historical notes.. (Cambridge: University Press. XXII u. 288 S. 8◦ (1911).,1911)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).