On the nonlinear quadratically perturbed fractional differential systems via complex order derivative

Abstract

The aim of this work is to investigate the existence of solutions for a nonlinear quadratically perturbed system involving the $ \psi $-Hilfer fractional derivative of complex order $ \beta \in \mathbb{C} $, where $ \beta= \alpha+ i\gamma $, $ (\alpha, \gamma, \in \mathbb{R}) $ and $ 0< \alpha < 1 $. The existence of solutions is established using Dhage's well-known fixed-point theorem. Finally, an example is provided to illustrate the results of this study.

Downloads

Download data is not yet available.

References

M.I. Abbas, M.A. Ragusa, Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel. AIMS Math. 7(11), 20328–20340 (2022).

P. Ahuja, A. Ujliyan, D. Sharma, H. Pratap, Deformable Laplace transform and its applications. Nonlinear Eng. 12(1), 20220278 (2023).

D. Baleanu, S. Etemad, S. A. Rezapour, Hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020).

C.T. Deressa, S. Etemad, S. Rezapour, On a new four-dimensional model of memristor-based chaotic circuit in the context of nonsingular Atangana–Baleanu–Caputo operators. Adv. Differ. Equ. 2021, 444 (2021).

B. C. DHAGE, Fixed point theorems in ordered Banach algebras and applications. Panamer. Math. J., 9, 4, 93–102 (1999).

B. C. DHAGE, Some algebraic fixed point theorems for multi-valued mappings with applications. Discuss. Math. Differ. Incl. Control Optim., 26, 5–55 (2006).

B.C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations. Nonlinear Anal. Hybrid 4, 414-424 (2010).

B.C. Dhage, On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett., 18 (3), 273–280 (2005).

B.C. Dhage, V. Lakshmikantham, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Diff. Eq. et App. 2 , 465-486 (2010).

K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ. 2015:183 (2015).

H. Khalid, A. Kajouni, and S. Zerbib, Hybrid fractional differential equation with nonlocal and impulsive conditions Filomat 37.10, 3291-3303 (2023).

A. A. Kilbas, H .M. Srivasta, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier B. V., Netherlands, 2016.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud, 204 Elsevier, Amsterdam, 2006.

A. Kolmogorov and S. Fomine, Element de la Th´eorie des Fonctions de l’Analyse Fonctinnelle, Edition MIR, Moscou. 1973.

E.R. Love, Fractional derivatives of imaginary order. J. London Math. Soc., 2 , pp. 241-259 (1971).

M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021).

A. Neamaty, M. Yadollahzadeh, R. Darzi, On fractional differential equation with complex order, Progr. Fract. Differ. Appl., 1 , pp. 223-227 (2015).

K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering. Academic Press, New York (1974).

J. Vanterler da C. Sousa, and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., vol. 60, pp. 72-91, 2018.

D. Vivek, K. Kanagarajan, S. Harikrishnan, Dynamics and stability results for integro-differential equations with complex order. Discontinuity, Nonlinearity and Compleity, 7(2), pp.119-127 (2018).

T.A. Yıldız, A. Jajarmi, B. Yıldız,D. Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete Contin. Dyn. Syst. 13 (3), 407–428 (2020).

S. Zerbib, K. Hilal, A. Kajouni, Nonlocal Caputo generalized proportional fractional integro-differential systems: an existence study. Journal of Mathematical Modeling, 375-391 (2025).

S. Zerbib, K. Hilal, A. Kajouni, Some new existence results on the hybrid fractional differential equation with variable order derivative. Results in Nonlinear Analysis 6.1, 34-48 (2023).

S. Zerbib, N. Chefnaj, K. Hilal, and A, Kajouni. Study of p-Laplacian hybrid fractional differential equations involving the generalized Caputo proportional fractional derivative. Computational Methods for Differential Equations. (2024).

Published
2025-06-24